Remark on Voronovskaja theorem for q-Bernstein operators

被引:0
|
作者
Finta, Zoltan [1 ]
机构
[1] Babes Bolyai Univ, Fac Math & Comp Sci, 1 Kogalniceanu St, Cluj Napoca 400084, Romania
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2011年 / 56卷 / 02期
关键词
Voronovskaja theorem; q-integers; q-Bernstein operators; K-functional; first order Ditzian-Totik modulus of smoothness;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish quantitative Voronovskaja type theorems for the q-Bernstein operators introduced by Phillips in 1997. Our estimates are given with the aid of the first order Ditzian-Totik modulus of smoothness.
引用
收藏
页码:335 / 339
页数:5
相关论文
共 50 条
  • [31] On the analyticity of functions approximated by their q-Bernstein polynomials when q > 1
    Ostrovskii, Iossif
    Ostrovska, Sofiya
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (01) : 65 - 72
  • [32] Evaluation of Norm of (p, q)-Bernstein Operators
    Khan, Nabiullah
    Saif, Mohd
    Usman, Talha
    MATHEMATICA SLOVACA, 2023, 73 (02) : 455 - 464
  • [33] On Kantorovich Modification of (p, q)-Bernstein Operators
    Acar, Tuncer
    Aral, Ali
    Mohiuddine, S. A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A3): : 1459 - 1464
  • [34] The approximation of logarithmic function by q-Bernstein polynomials in the case q > 1
    Ostrovska, Sofiya
    NUMERICAL ALGORITHMS, 2007, 44 (01) : 69 - 82
  • [35] The approximation of power function by the q-Bernstein polynomials in the case q > 1
    Ostrovska, Sofiya
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2008, 11 (03): : 585 - 597
  • [36] (p, q)-Bivariate-Bernstein-Chlodowsky Operators
    Rao, Nadeem
    Wafi, Abdul
    FILOMAT, 2018, 32 (02) : 369 - 378
  • [37] Approximation properties of (p, q)-Bernstein type operators
    Finta, Zoltan
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2016, 8 (02) : 222 - 232
  • [38] Some approximation properties of (p, q)-Bernstein operators
    Kang, Shin Min
    Rafiq, Arif
    Acu, Ana-Maria
    Ali, Faisal
    Kwun, Young Chel
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [39] Bivariate α,q-Bernstein-Kantorovich Operators and GBS Operators of Bivariate α,q-Bernstein-Kantorovich Type
    Cai, Qing-Bo
    Cheng, Wen-Tao
    Cekim, Bayram
    MATHEMATICS, 2019, 7 (12)
  • [40] The q-Bernstein polynomials of the Cauchy kernel with a pole on [0,1] in the case q > 1
    Ostrovska, Sofiya
    Ozban, Ahmet Yasar
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 : 735 - 747