ON THE UNIFORM-CONVERGENCE OF CAUCHY PRINCIPAL VALUES OF QUASI-INTERPOLATING SPLINES

被引:9
|
作者
RABINOWITZ, P
SANTI, E
机构
[1] WEIZMANN INST SCI,DEPT APPL MATH & COMP SCI,IL-76100 REHOVOT,ISRAEL
[2] UNIV LAQUILA,DEPT ENERGET,I-67100 LAQUILA,ITALY
来源
BIT | 1995年 / 35卷 / 02期
关键词
CAUCHY PRINCIPAL VALUE; SPLINE;
D O I
10.1007/BF01737167
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, quasi-interpolating splines are used to approximate the Cauchy principal value integral J(w(alpha beta)f;lambda) := integral(-1)(1) w(alpha beta)(x)f(x)/x-lambda dx, lambda is an element of (-1,1) where w(alpha beta)(x) := (1 - x)(alpha)(1 + x)(beta), alpha,beta > -1. We prove uniform convergence for the quadrature rules proposed here and give an algorithm for the numerical evaluation of these rules.
引用
收藏
页码:277 / 290
页数:14
相关论文
共 29 条