Homogeneous Sulfur-Cobalt Sulfide Nanocomposites as Lithium-Sulfur Battery Cathodes with Enhanced Reaction Kinetics

被引:42
作者
Lao, Mengmeng [1 ]
Zhao, Guoqiang [1 ]
Li, Xin [1 ]
Chen, Yaping [1 ]
Dou, Shi Xue [1 ]
Sun, Wenping [1 ]
机构
[1] Univ Wollongong, Inst Superconducting & Elect Mat, Australian Inst Innovat Mat, Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会;
关键词
cobalt sulfide; nanocomposite; reaction kinetics; cathode; lithium-sulfur batteries; HOLLOW SPHERES; LONG-LIFE; PERFORMANCE; GRAPHENE; POLYSULFIDES; ELECTRODE; NANOSTRUCTURES; NANOPARTICLES; INTERLAYER; NANOSHEETS;
D O I
10.1021/acsaem.7b00049
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium sulfur (Li-S) batteries, as promising alternatives to lithium ion batteries (LIBs), are drawing significant attention owing to their high theoretical capacity and energy density. However, the sluggish reaction kinetics and poor cycling stability have remained a great challenge, hindering the practical application of Li-S batteries. Herein, sulfur-cobalt sulfide nanocomposites with tunable sulfur content were synthesized via a facile one-pot refluxing method towards enhanced reaction kinetics for Li-S batteries. Uniform distribution of sulfur and cobalt sulfide at the nanoscale was achieved in the composites. The sulfur-cobalt sulfide nanocomposites delivered higher specific capacities and significantly enhanced rate performance compared to bulk sulfur cathode. The significant performance improvement is in great part due to the formation of sulfur nanoparticles and greatly improved electrical conductivity of the nanocomposites, which would result in shortened mass diffusion pathway and enhanced charge-transfer ability, thereby inducing accelerated electrode reaction kinetics.
引用
收藏
页码:167 / 172
页数:11
相关论文
共 50 条
[1]   CuCo2O4 nanoparticles on nitrogenated graphene as highly efficient oxygen evolution catalyst [J].
Bikkarolla, Santosh Kumar ;
Papakonstantinou, Pagona .
JOURNAL OF POWER SOURCES, 2015, 281 :243-251
[2]   A Flexible Nanostructured Paper of a Reduced Graphene Oxide-Sulfur Composite for High- Performance Lithium-Sulfur Batteries with Unconventional Configurations [J].
Cao, Jun ;
Chen, Chen ;
Zhao, Qing ;
Zhang, Ning ;
Lu, Qiongqiong ;
Wang, Xinyu ;
Niu, Zhiqiang ;
Chen, Jun .
ADVANCED MATERIALS, 2016, 28 (43) :9629-+
[3]   A Quinonoid-Imine-Enriched Nanostructured Polymer Mediator for Lithium-Sulfur Batteries [J].
Chen, Chen-Yu ;
Peng, Hong-Jie ;
Hou, Ting-Zheng ;
Zhai, Pei-Yan ;
Li, Bo-Quan ;
Tang, Cheng ;
Zhu, Wancheng ;
Huang, Jia-Qi ;
Zhang, Qiang .
ADVANCED MATERIALS, 2017, 29 (23)
[4]   Monodispersed Sulfur Nanoparticles for Lithium Sulfur Batteries with Theoretical Performance [J].
Chen, Hongwei ;
Wang, Changhong ;
Dong, Weiling ;
Lu, Wei ;
Du, Zhaolong ;
Chen, Liwei .
NANO LETTERS, 2015, 15 (01) :798-802
[5]   Ultrafine Sulfur Nanoparticles in Conducting Polymer Shell as Cathode Materials for High Performance Lithium/Sulfur Batteries [J].
Chen, Hongwei ;
Dong, Weiling ;
Ge, Jun ;
Wang, Changhong ;
Wu, Xiaodong ;
Lu, Wei ;
Chen, Liwei .
SCIENTIFIC REPORTS, 2013, 3
[6]   Influence of the synergistic effect between Co-N-C and ceria on the catalytic performance for selective oxidation of ethylbenzene [J].
Chen, Yuan ;
Zhao, Sufang ;
Liu, Zhigang .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (21) :14012-14020
[7]   Electrochemical Impedance Spectroscopy Study of a Lithium/Sulfur Battery: Modeling and Analysis of Capacity Fading [J].
Deng, Zhaofeng ;
Zhang, Zhian ;
Lai, Yanqing ;
Liu, Jin ;
Li, Jie ;
Liu, Yexiang .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (04) :A553-A558
[8]   Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation [J].
Ding, Rui ;
Qi, Li ;
Jia, Mingjun ;
Wang, Hongyu .
NANOSCALE, 2014, 6 (03) :1369-1376
[9]   Facile Solid-State Growth of 3D Well-Interconnected Nitrogen-Rich Carbon Nanotube-Graphene Hybrid Architectures for Lithium-Sulfur Batteries [J].
Ding, Yuan-Li ;
Kopold, Peter ;
Hahn, Kersten ;
van Aken, Peter A. ;
Maier, Joachim ;
Yu, Yan .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (07) :1112-1119
[10]   New Approaches for High Energy Density Lithium-Sulfur Battery Cathodes [J].
Evers, Scott ;
Nazar, Linda F. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (05) :1135-1143