ALMOST TIGHT BOUNDS FOR EPSILON-NETS

被引:78
作者
KOMLOS, J
PACH, J
WOEGINGER, G
机构
[1] HUNGARIAN ACAD SCI,INST MATH,H-1364 BUDAPEST,HUNGARY
[2] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
[3] GRAZ TECH UNIV,INST MATH,A-8010 GRAZ,AUSTRIA
关键词
D O I
10.1007/BF02187833
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given any natural number d, 0 < epsilon < 1, let f(d)(epsilon) denote the smallest integer f such that every range space of Vapnik-Chervonenkis dimension d has an epsilon-net of size at most f. We solve a problem of Haussler and Welzl by showing that if d greater-than-or-equal-to 2, then [GRAPHICS] Further, we prove that f1(epsilon) = max(2, inverted right perpendicular 1/epsilon inverted left perpendicular - 1), and similar bounds are established for some special classes of range spaces of Vapnik-Chervonenkis dimension three.
引用
收藏
页码:163 / 173
页数:11
相关论文
共 13 条
[1]  
AGARWAL PK, 1990, DISCRETE COMPUTATION, V5
[2]  
BLUMER A, 1989, J ASS COMPUTING MACH, V36
[3]  
Chazelle B., 1988, 29th Annual Symposium on Foundations of Computer Science (IEEE Cat. No.88CH2652-6), P539, DOI 10.1109/SFCS.1988.21970
[4]   QUASI-OPTIMAL RANGE SEARCHING IN SPACES OF FINITE VC-DIMENSION [J].
CHAZELLE, B ;
WELZL, E .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (05) :467-489
[5]   NEW APPLICATIONS OF RANDOM SAMPLING IN COMPUTATIONAL GEOMETRY [J].
CLARKSON, KL .
DISCRETE & COMPUTATIONAL GEOMETRY, 1987, 2 (02) :195-222
[6]   COMBINATORIAL COMPLEXITY-BOUNDS FOR ARRANGEMENTS OF CURVES AND SPHERES [J].
CLARKSON, KL ;
EDELSBRUNNER, H ;
GUIBAS, LJ ;
SHARIR, M ;
WELZL, E .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (02) :99-160
[7]  
EDELSBRUNNER H, 1987, EATCS MONOGRAPHS THE
[8]   EPSILON-NETS AND SIMPLEX RANGE QUERIES [J].
HAUSSLER, D ;
WELZL, E .
DISCRETE & COMPUTATIONAL GEOMETRY, 1987, 2 (02) :127-151
[9]  
MATOUSEK J, 1989, 5TH P ACM S COMP GEO, P1
[10]  
MATOUSEK J, 1990, 6TH P ANN S COMP GEO