Effect of Constriction on Phonon Transport in Silicon Thin Films and Nanowires

被引:2
作者
Dulhani, Jay [1 ]
Lee, Bong Jae [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mech Engn, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
Nanoscale constriction; heat conduction; Boltzman transport equation;
D O I
10.1080/23080477.2016.1229101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Technological advancement has made manufacturing of various nanostructures possible. Thermal transport in such nanostructures is fundamentally different from macroscale. Initial studies have indicated that thermal properties of these nanostructures also depend on its geometry. Hence, it is possible to tailor nanostructure geometry to achieve targeted thermal properties. In the present work, thermal transport in (a) constricted thin films and (b) constricted nanowires is studied using gray phonon Boltzmann transport equation (BTE) for a wide range of constriction ratio. Finite volume method is used to numerically solve the BTE with the relaxation time approximation. We show in this paper that by varying the degree of constriction, thermal conductivity of thin films and nanowires can be altered significantly. Thin films and nanowires are found to respond differently to constriction. [GRAPHICS] .
引用
收藏
页码:173 / 179
页数:7
相关论文
共 32 条
[1]   Monte Carlo simulation of thermal conductivity of Si nanowire: An investigation on the phonon confinement effect on the thermal transport [J].
Bera, Chandan .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (07)
[2]   BOUNDARY SCATTERING OF PHONONS [J].
BHANDARI, CM ;
ROWE, DM .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1978, 11 (09) :1787-1794
[3]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[4]   Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices [J].
Chen, G .
PHYSICAL REVIEW B, 1998, 57 (23) :14958-14973
[5]   Multi-length and time scale thermal transport using the lattice Boltzmann method with application to electronics cooling [J].
Escobar, RA ;
Ghai, SS ;
Jhon, MS ;
Amon, CH .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (1-2) :97-107
[6]   Thermal conductivity of silicon nanowire arrays with controlled roughness [J].
Feser, Joseph P. ;
Sadhu, Jyothi S. ;
Azeredo, Bruno P. ;
Hsu, Keng H. ;
Ma, Jun ;
Kim, Junhwan ;
Seong, Myunghoon ;
Fang, Nicholas X. ;
Li, Xiuling ;
Ferreira, Placid M. ;
Sinha, Sanjiv ;
Cahill, David G. .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (11)
[7]   Numerical simulation of gas-phonon coupling in thermal transpiration flows [J].
Guo, Xiaohui ;
Singh, Dhruv ;
Murthy, Jayathi ;
Alexeenko, Alina A. .
PHYSICAL REVIEW E, 2009, 80 (04)
[8]   Finite element analysis of transient ballistic-diffusive phonon heat transport in two-dimensional domains [J].
Hamian, Sina ;
Yamada, Toru ;
Faghri, Mohammad ;
Park, Keunhan .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 80 :781-788
[9]  
Heaslet M. A., 1965, INT J HEAT MASS TRAN, V8, P979
[10]   Mesoscopic Size Effects on the Thermal Conductance of Silicon Nanowire [J].
Heron, J. S. ;
Fournier, T. ;
Mingo, N. ;
Bourgeois, O. .
NANO LETTERS, 2009, 9 (05) :1861-1865