Summability of Fourier transforms in variable Hardy and Hardy-Lorentz spaces

被引:7
作者
Weisz, Ferenc [1 ]
机构
[1] Eotvos L Univ, Dept Numer Anal, Pazmany P Setany 1-C, H-1117 Budapest, Hungary
来源
JAEN JOURNAL ON APPROXIMATION | 2018年 / 10卷 / 01期
关键词
variable Hardy spaces; variable Hardy-Lorentz spaces; atomic de-composition; theta-summability; maximal operator;
D O I
10.4571/Jacan.J.5487
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p(.) : R-n -> (0, infinity) be a variable exponent function satisfying the globally log- Holder condition and 0 < q <= infinity. We introduce the variable Hardy and Hardy-Lorentz spaces H-p(.)(R-d) and H-p(.),H-q(R-d). A general summability method, the so called theta-summability is considered for multi-dimensional Fourier transforms. Under some conditions on theta, it is proved that the maximal operator of the.-means is bounded from H-p(.)(R-d) to L-p(.)(R-d) and from H-p(.),H-q(R-d) to L-p(.),L-q(R-d). This implies some norm and almost everywhere convergence results for the theta-means, amongst others the generalization of the well known Lebesgue's theorem. Some special cases of the theta-summation are considered, such as the Riesz, Bochner-Riesz, Weierstrass, Picard and Bessel summations.
引用
收藏
页码:101 / 131
页数:31
相关论文
共 44 条
[1]  
Bergh J., 1976, Interpolation spaces. An introduction
[2]  
Butzer P.L., 1971, FOURIER ANAL APPROXI, V1
[3]  
Cruz-Uribe D, 2006, ANN ACAD SCI FENN-M, V31, P239
[4]  
Cruz-Uribe D, 2003, ANN ACAD SCI FENN-M, V28, P223
[5]  
CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
[6]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[7]  
Fefferman C, 1972, ACTA MATH-DJURSHOLM, V129, P137, DOI 10.1007/BF02392215
[8]  
Feichtinger HG, 2006, MONATSH MATH, V148, P333, DOI 10.1007/s00605-005-0358-4
[9]   Wiener amalgams and pointwise summability of Fourier transforms and Fourier series [J].
Feichtinger, Hans G. ;
Weisz, Ferenc .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2006, 140 :509-536
[10]  
Fejer L, 1904, MATH ANN, V58, P51