Improving Graph-Based Image Segmentation Using Nonlinear Color Similarity Metrics

被引:1
作者
Carvalho, L. E. [1 ]
Neto, S. L. Mantelli [2 ]
Sobieranski, A. C. [3 ]
Comunello, E. [4 ]
von Wangenheim, A. [5 ]
机构
[1] Univ Fed Santa Catarina, Grad Program Comp Sci, Image Proc & Comp Graph Lab, Natl Brazilian Inst Digital Convergence, BR-88040900 Florianopolis, SC, Brazil
[2] Univ Fed Santa Catarina, Brazilian Inst Space Res INPE, Image Proc & Comp Graph Lab, Natl Brazilian Inst Digital Convergence, BR-88040900 Florianopolis, SC, Brazil
[3] Univ Fed Santa Catarina, Image Proc & Comp Graph Lab, Natl Brazilian Inst Digital Convergence, BR-88040900 Florianopolis, SC, Brazil
[4] Univ Fed Santa Catarina, Vis Lab 4, Univ Itajai Valley,Natl Brazilian Inst Digital Co, Image Proc & Comp Graph Lab, BR-88040900 Florianopolis, SC, Brazil
[5] Univ Fed Santa Catarina, Image Proc & Comp Graph Lab, Natl Brazilian Inst Digital Convergence, BR-88040900 Florianopolis, SC, Brazil
关键词
Felzenszwalb and Huttenlocher; polynomial Mahalanobis distance; nonlinear color similarity metrics;
D O I
10.1142/S0219467815500187
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a new segmentation method called weighted Felzenszwalb and Huttenlocher (WFH), an improved version of the well-known graph-based segmentation method, Felzenszwalb and Huttenlocher (FH). Our algorithm uses a nonlinear discrimination function based on polynomial Mahalanobis Distance (PMD) as the color similarity metric. Two empirical validation experiments were performed using as a golden standard ground truths (GTs) from a publicly available source, the Berkeley dataset, and an objective segmentation quality measure, the Rand dissimilarity index. In the first experiment the results were compared against the original FH method. In the second, WFH was compared against several well-known segmentation methods. In both case,s WFH presented significant better similarity results when compared with the golden standard and segmentation results presented a reduction of over-segmented regions.
引用
收藏
页数:14
相关论文
共 36 条
[1]  
Ben-Hur Asa, 2002, Pac Symp Biocomput, P6
[2]   Hybrid Color Segmentation Method Using a Customized Nonlinear Similarity Function [J].
Carvalho, L. E. ;
Neto, S. L. Mantelli ;
von Wangenheim, A. ;
Sobieranski, A. C. ;
Coser, L. ;
Comunello, E. .
INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2014, 14 (1-2)
[3]  
Christoudias CM, 2002, INT C PATT RECOG, P150, DOI 10.1109/ICPR.2002.1047421
[4]   Unsupervised segmentation of color-texture regions in images and video [J].
Deng, YN ;
Manjunath, BS .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (08) :800-810
[5]  
Dongen S, 2000, TECHNICAL REPORT
[6]  
DUDA RO, 2000, PATTERN CLASSIFICATI
[7]  
Felzenszwalb P. F., 2004, EFFICIENTE GRAPH BAS
[8]   Efficient graph-based image segmentation [J].
Felzenszwalb, PF ;
Huttenlocher, DP .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 59 (02) :167-181
[9]   A METHOD FOR COMPARING 2 HIERARCHICAL CLUSTERINGS [J].
FOWLKES, EB ;
MALLOWS, CL .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1983, 78 (383) :553-569
[10]  
Grudic G., 2006, P ROB SCI SYST, P4