Observability of discretized wave equations

被引:4
作者
Komornik, Vilmos [1 ]
Loreti, Paola [2 ]
机构
[1] Univ Louis Pasteur, Dept Math, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[2] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat Sci Appl, I-00161 Rome, Italy
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2007年 / 25卷 / 1-2期
关键词
Observability; Fourier series; vibrating strings;
D O I
10.5269/bspm.v25i1-2.7426
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish several boundary observability results for finite-dimensional approximations of systems of strings and beams via space discretization. Our results allow us to recover the optimal observability theorems concerning the continuous case by a limit process.
引用
收藏
页码:67 / 76
页数:10
相关论文
共 50 条
[21]   Carleman estimates with no lower-order terms for general Riemann wave equations. Global uniqueness and observability in one shot [J].
Triggiani, R ;
Yao, PF .
APPLIED MATHEMATICS AND OPTIMIZATION, 2002, 46 (2-3) :331-375
[22]   Analyticity and observability for fractional order parabolic equations in the whole space [J].
Wang, Ming ;
Zhang, Can .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29
[23]   Controllability and observability theory of certain parabolic integro differential equations [J].
Sakthivel, K. ;
Balachandran, K. ;
Sritharan, S. S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 52 (8-9) :1299-1316
[24]   MINIMAL TIME ISSUES FOR THE OBSERVABILITY OF GRUSHIN-TYPE EQUATIONS [J].
Beauchard, Karine ;
Darde, Jeremi ;
Ervedoza, Sylvain .
ANNALES DE L INSTITUT FOURIER, 2020, 70 (01) :247-312
[25]   On the observability of abstract time-discrete linear parabolic equations [J].
Sylvain Ervedoza ;
Julie Valein .
Revista Matemática Complutense, 2010, 23 :163-190
[26]   Quantitative observability for the Schrodinger and Heisenberg equations: An optimal transport approach [J].
Golse, Francois ;
Paul, Thierry .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (05) :941-963
[27]   Observability and reachability for parallel-flow heat exchanger equations [J].
Sano, Hideki .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2007, 24 (01) :137-147
[28]   On the observability of abstract time-discrete linear parabolic equations [J].
Ervedoza, Sylvain ;
Valein, Julie .
REVISTA MATEMATICA COMPLUTENSE, 2010, 23 (01) :163-190
[29]   Explicit observability estimate for the wave equation with potential and its application [J].
Zhang, X .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (1997) :1101-1115
[30]   Observability for the Wave Equation with Variable Support in the Dirichlet and Neumann Cases [J].
Agresti, Antonio ;
Andreucci, Daniele ;
Loreti, Paola .
INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS (ICINCO 2018), 2020, 613 :51-75