Observability of discretized wave equations

被引:4
|
作者
Komornik, Vilmos [1 ]
Loreti, Paola [2 ]
机构
[1] Univ Louis Pasteur, Dept Math, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[2] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat Sci Appl, I-00161 Rome, Italy
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2007年 / 25卷 / 1-2期
关键词
Observability; Fourier series; vibrating strings;
D O I
10.5269/bspm.v25i1-2.7426
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish several boundary observability results for finite-dimensional approximations of systems of strings and beams via space discretization. Our results allow us to recover the optimal observability theorems concerning the continuous case by a limit process.
引用
收藏
页码:67 / 76
页数:10
相关论文
共 50 条
  • [11] Sensors and regional observability of the wave equation
    Zerrik, E.
    Benhadid, S.
    Bouffay, H.
    SENSORS AND ACTUATORS A-PHYSICAL, 2007, 138 (02) : 313 - 328
  • [12] Observability of Boolean networks via matrix equations
    Yu, Yongyuan
    Meng, Min
    Feng, Jun-e
    AUTOMATICA, 2020, 111
  • [13] Observability for Schrödinger equations with quadratic Hamiltonians
    Waters, Alden
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 4 (02):
  • [14] Observability in linear systems of equations and inequalities: Applications
    Castillo, Enrique
    Conejo, Antonio J.
    Pruneda, Rosa Eva
    Solares, Cristina
    COMPUTERS & OPERATIONS RESEARCH, 2007, 34 (06) : 1708 - 1720
  • [15] GEOMETRIC AND PROBABILISTIC RESULTS FOR THE OBSERVABILITY OF THE WAVE EQUATION
    Humbert, Emmanuel
    Privat, Yannick
    Trelat, Emmanuel
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2022, 9 : 431 - 461
  • [16] Time scale observability and constructibility of linear dynamic equations
    Ben Nasser, Bacem
    Djemai, Mohamed
    Defoort, Michael
    Laleg-Kirati, Taous-Meriem
    INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (08) : 1994 - 2004
  • [17] CRITICAL TIME FOR THE OBSERVABILITY OF KOLMOGOROV-TYPE EQUATIONS
    Darde, Jeremi
    Royer, Julien
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2021, 8 : 859 - 894
  • [18] OBSERVABILITY OF DISPERSIVE EQUATIONS FROM LINE SEGMENTS ON THE TORUS
    Wang, Yunlei
    Wang, Ming
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2024, 13 (03): : 925 - 949
  • [19] Partial observability of a wave-Petrovsky system with memory
    Loreti, Paola
    Sforza, Daniela
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2015, (90)
  • [20] The wave equation with oscillating density: Observability at low frequency
    Lebeau, G
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2000, 5 : 219 - 258