Observability of discretized wave equations

被引:4
作者
Komornik, Vilmos [1 ]
Loreti, Paola [2 ]
机构
[1] Univ Louis Pasteur, Dept Math, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[2] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat Sci Appl, I-00161 Rome, Italy
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2007年 / 25卷 / 1-2期
关键词
Observability; Fourier series; vibrating strings;
D O I
10.5269/bspm.v25i1-2.7426
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish several boundary observability results for finite-dimensional approximations of systems of strings and beams via space discretization. Our results allow us to recover the optimal observability theorems concerning the continuous case by a limit process.
引用
收藏
页码:67 / 76
页数:10
相关论文
共 50 条
[11]   Sensors and regional observability of the wave equation [J].
Zerrik, E. ;
Benhadid, S. ;
Bouffay, H. .
SENSORS AND ACTUATORS A-PHYSICAL, 2007, 138 (02) :313-328
[12]   Observability of Boolean networks via matrix equations [J].
Yu, Yongyuan ;
Meng, Min ;
Feng, Jun-e .
AUTOMATICA, 2020, 111
[13]   Observability in linear systems of equations and inequalities: Applications [J].
Castillo, Enrique ;
Conejo, Antonio J. ;
Pruneda, Rosa Eva ;
Solares, Cristina .
COMPUTERS & OPERATIONS RESEARCH, 2007, 34 (06) :1708-1720
[14]   Observability for Schrödinger equations with quadratic Hamiltonians [J].
Waters, Alden .
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 4 (02)
[15]   GEOMETRIC AND PROBABILISTIC RESULTS FOR THE OBSERVABILITY OF THE WAVE EQUATION [J].
Humbert, Emmanuel ;
Privat, Yannick ;
Trelat, Emmanuel .
JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2022, 9 :431-461
[16]   CRITICAL TIME FOR THE OBSERVABILITY OF KOLMOGOROV-TYPE EQUATIONS [J].
Darde, Jeremi ;
Royer, Julien .
JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2021, 8 :859-894
[17]   Time scale observability and constructibility of linear dynamic equations [J].
Ben Nasser, Bacem ;
Djemai, Mohamed ;
Defoort, Michael ;
Laleg-Kirati, Taous-Meriem .
INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (08) :1994-2004
[18]   OBSERVABILITY OF DISPERSIVE EQUATIONS FROM LINE SEGMENTS ON THE TORUS [J].
Wang, Yunlei ;
Wang, Ming .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2024, 13 (03) :925-949
[19]   The wave equation with oscillating density: Observability at low frequency [J].
Lebeau, G .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2000, 5 :219-258
[20]   Partial observability of a wave-Petrovsky system with memory [J].
Loreti, Paola ;
Sforza, Daniela .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2015, (90)