CONDITIONS FOR SOLVABILITY OF A BOUNDARY VALUE PROBLEM RELATIVE TO HEAT CONDUCTION EQUATION

被引:0
|
作者
KIM, EI
机构
来源
DOKLADY AKADEMII NAUK SSSR | 1961年 / 140卷 / 03期
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:553 / &
相关论文
共 50 条
  • [1] On the solvability of the first boundary value problem for the loaded equation of heat conduction
    Jenaliyev, M. T.
    Iskakov, S. A.
    Ramazanov, M. I.
    Tuleutaeva, Zh. M.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2018, 89 (01): : 33 - 41
  • [2] On the Analytic Solvability of a Special Boundary Value Problem for the Nonlinear Heat Equation
    Kazakov, A. L.
    Lempert, A. A.
    Kuznetsov, P. A.
    MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2017), 2017, 1915
  • [3] Solvability of the initial-boundary value problem for the quasilinear heat equation
    Shutyaev, VP
    DIFFERENTIAL EQUATIONS, 1999, 35 (06) : 811 - 814
  • [4] Solvability of a boundary value problem for a pseudoparabolic equation with nonlocal integral conditions
    Popov, N. S.
    DIFFERENTIAL EQUATIONS, 2015, 51 (03) : 362 - 375
  • [5] Solvability of a boundary value problem for a pseudoparabolic equation with nonlocal integral conditions
    N. S. Popov
    Differential Equations, 2015, 51 : 362 - 375
  • [6] Unique solvability of the inverse problem for the heat equation with nonlocal boundary conditions
    Lukshin A.V.
    Reznik B.I.
    Computational Mathematics and Modeling, 2007, 18 (1) : 29 - 41
  • [7] Concerning the boundary value problem in the generalised heat conduction equation
    Huber, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1927, 7 : 469 - 476
  • [8] On the integral equation of an adjoint boundary value problem of heat conduction
    Kosmakova, M. T.
    Romanovski, V. G.
    Orumbayeva, N. T.
    Tuleutaeva, Zh. M.
    Kasymova, L. Zh.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2019, 95 (03): : 33 - 43
  • [9] A Study of an Inverse Boundary Value Problem for the Heat Conduction Equation
    A. I. Sidikova
    Numerical Analysis and Applications, 2019, 12 : 70 - 86
  • [10] A Study of an Inverse Boundary Value Problem for the Heat Conduction Equation
    Sidikova, A. I.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2019, 12 (01) : 70 - 86