FOURIER-TRANSFORM INEQUALITIES WITH MEASURE WEIGHTS

被引:10
作者
BENEDETTO, JJ
HEINIG, H
机构
[1] UNIV MARYLAND,SYST RES CTR,COLL PK,MD 20742
[2] MCMASTER UNIV,DEPT MATH,HAMILTON L8S 4L8,ONTARIO,CANADA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0001-8708(92)90055-P
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fourier transform norm inequalities, ∥ f ̂∥q,μ <- C ∥f∥p,υ, are proved for measure weights μ on moment subspaces of Lpυ(Rn). Density theorems are established to extend the inequalities to all of Lpυ(Rn). In both cases the conditions for validity are computable. For n ≥ 2, μ and υ are radial, and the results are applied to prove spherical restriction theorems which include power weights υ(t) = = ∥t∥α, n (p′ - 1) < α < (p′ + n) (p′ - 1). © 1992.
引用
收藏
页码:194 / 225
页数:32
相关论文
共 25 条
[21]  
SMITH KT, 1971, PRIMER MODERN ANAL
[22]  
Stein E., 1976, STUDIES MATH, V13, P97
[23]  
Talenti G., 1969, REND SEM MAT FIS, V39, P171, DOI DOI 10.1007/BF02924135
[24]  
TOMASELLI G, 1969, B UNIONE MAT ITAL, V2, P622
[25]  
ZYGMUND A, 1974, STUD MATH, V50, P189