FOURIER-TRANSFORM INEQUALITIES WITH MEASURE WEIGHTS

被引:10
作者
BENEDETTO, JJ
HEINIG, H
机构
[1] UNIV MARYLAND,SYST RES CTR,COLL PK,MD 20742
[2] MCMASTER UNIV,DEPT MATH,HAMILTON L8S 4L8,ONTARIO,CANADA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0001-8708(92)90055-P
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fourier transform norm inequalities, ∥ f ̂∥q,μ <- C ∥f∥p,υ, are proved for measure weights μ on moment subspaces of Lpυ(Rn). Density theorems are established to extend the inequalities to all of Lpυ(Rn). In both cases the conditions for validity are computable. For n ≥ 2, μ and υ are radial, and the results are applied to prove spherical restriction theorems which include power weights υ(t) = = ∥t∥α, n (p′ - 1) < α < (p′ + n) (p′ - 1). © 1992.
引用
收藏
页码:194 / 225
页数:32
相关论文
共 25 条
[1]   WEIGHTED WEAK TYPE HARDY INEQUALITIES WITH APPLICATIONS TO HILBERT-TRANSFORMS AND MAXIMAL FUNCTIONS [J].
ANDERSEN, KF ;
MUCKENHOUPT, B .
STUDIA MATHEMATICA, 1982, 72 (01) :9-26
[2]  
BENEDETTO J, DEFINITION FOURIER T
[3]  
BENEDETTO J. J., 1987, INT SER NUM MATH, V80, P217, DOI DOI 10.1007/978-3-0348-7192-L17.MR1018148
[4]  
BENEDETTO JJ, 1983, LECT NOTES MATH, V992, P240
[5]   WEIGHTED HARDY-SPACES AND THE LAPLACE TRANSFORM .2. [J].
BENEDETTO, JJ ;
HEINIG, HP ;
JOHNSON, R .
MATHEMATISCHE NACHRICHTEN, 1987, 132 :29-55
[6]  
BENEDETTO JJ, 1976, REAL VARIABLE INTEGR
[7]  
BOURBAKI N, 1952, INTEGRATION
[8]  
Bradley JS., 1978, CANAD MATH B, V21, P405, DOI 10.4153/CMB-1978-071-7
[10]   CONVERGENCE OF MULTIPLE FOURIER SERIES [J].
FEFFERMAN, C .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 77 (05) :744-+