Screen Slant Lightlike Submanifolds of Indefinite Sasakian Manifolds

被引:0
作者
Haider, S. M. Khursheed [1 ]
Advin [1 ]
Thakur, Mamta [1 ]
机构
[1] Jamia Millia Islamia, Fac Nat Sci, Dept Math, New Delhi 110025, India
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2012年 / 52卷 / 04期
关键词
Degenerate metric; screen slant lightlike submanifold; indefinite Sasakian manifold;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce screen slant lightlike submanifold of an indefinite Sasakian manifold and give examples. We prove a characterization theorem for the existence of screen slant lightlike submanifolds. We also obtain integrability conditions of both screen and radical distributions, prove characterization theorems on the existence of minimal screen slant lightlike submanifolds and give an example of proper minimal screen slant lightlike submanifolds of R-2(9).
引用
收藏
页码:443 / 457
页数:15
相关论文
共 14 条
[1]  
Bejan C.L., 2005, KODAI MATH J, V28, P131, DOI [10.2996/kmj/1111588042, DOI 10.2996/KMJ/1111588042]
[2]   SLANT IMMERSIONS [J].
CHEN, BY .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1990, 41 (01) :135-147
[3]  
Duggal K. L., 2010, DIFFERENTIAL GEOMETY
[4]  
Duggal K. L., 2007, J MATH MATH SCI, V2007
[5]  
Duggal K.L., 1990, INT J MATH MATH SCI, V13, P545, DOI DOI 10.1155/S0161171290000783
[6]   Screen Cauchy Riemann lightlike submanifolds [J].
Duggal, KL ;
Sahin, B .
ACTA MATHEMATICA HUNGARICA, 2005, 106 (1-2) :137-165
[7]  
Lotta A., 1996, B MATH SOC SCI MATH, V39, P183
[8]  
O'Neill B., 1982, PURE APPL MATH
[9]  
Sahin B., 2008, J GEOMETRY ITS APPL, V13, P107
[10]  
Sahin B, 2012, FILOMAT, V26, P71