ELLIPTIC VARIATIONAL-INEQUALITIES OF MONOTONE KIND

被引:0
作者
KRATZSCHMAR, M
机构
[1] Technische Hochschule Darmstadt, 6100 Darmstadt
关键词
Elliptic variational inequalities; flow of viscous plastic fluid; monotonicity principles; obstacle problems; problems of monotone kind; Signorini problems;
D O I
10.1016/0362-546X(90)90139-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:307 / 320
页数:14
相关论文
共 45 条
[41]   NUMERICAL ANALYSIS OF A FAMILY OF OPTIMAL DISTRIBUTED CONTROL PROBLEMS GOVERNED BY AN ELLIPTIC VARIATIONAL INEQUALITY [J].
Olguin, Mariela C. ;
Tarzia, Domingo A. .
ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2016, 17 (02) :159-176
[42]   A GRADIENT DISCRETIZATION METHOD TO ANALYZE NUMERICAL SCHEMES FOR NONLINEAR VARIATIONAL INEQUALITIES, APPLICATION TO THE SEEPAGE PROBLEM [J].
Alnashri, Yahya ;
Droniou, Jerome .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (04) :2375-2405
[43]   Variational Inequalities on Unbounded Domains for Zero-Sum Singular Controller vs. Stopper Games [J].
Bovo A. ;
De Angelis T. ;
Issoglio E. .
Mathematics of Operations Research, 2024, 1
[44]   Optimal control for obstacle problems involving time-dependent variational inequalities with Liouville–Caputo fractional derivative [J].
Parinya Sa Ngiamsunthorn ;
Apassara Suechoei ;
Poom Kumam .
Advances in Difference Equations, 2021
[45]   Optimal control for obstacle problems involving time-dependent variational inequalities with Liouville-Caputo fractional derivative [J].
Sa Ngiamsunthorn, Parinya ;
Suechoei, Apassara ;
Kumam, Poom .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)