OSCILLATORY AND ASYMPTOTIC-BEHAVIOR OF A DISCRETE LOGISTIC MODEL

被引:7
作者
KONG, Q [1 ]
机构
[1] NO ILLINOIS UNIV, DEPT MATH, DE KALB, IL 60115 USA
关键词
D O I
10.1216/rmjm/1181072287
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the discrete logistic model with or without delay x(n+1) = alpha(n)x(n)/1 + beta(n)x(n-j), n = 0, 1, 2,..., j greater than or equal to 0 where alpha(n), beta n are positive bounded sequences. A complete discussion on the oscillatory and asymptotic behavior is given for the case that j = 0. For the case that j > 0, some results on oscillation are also obtained.
引用
收藏
页码:339 / 349
页数:11
相关论文
共 8 条
[1]  
Gyori I., 1991, OSCILLATION THEORY D
[2]  
Gyori I., 1989, DIFFER INTEGRAL EQU, V2, P123
[3]  
KONG Q, 1993, FAR E J MATH SCI, V1, P35
[4]   OSCILLATIONS AND GLOBAL ATTRACTIVITY IN A DISCRETE DELAY LOGISTIC MODEL [J].
KURUKLIS, SA ;
LADAS, G .
QUARTERLY OF APPLIED MATHEMATICS, 1992, 50 (02) :227-233
[5]  
LADAS G, 1990, RECENT DEV OSCILLATI
[6]   NOTE ON DIFFERENCE-DELAY EQUATIONS [J].
LEVIN, SA ;
MAY, RM .
THEORETICAL POPULATION BIOLOGY, 1976, 9 (02) :178-187
[7]   AN OUTLINE OF THE DYNAMICS OF ANIMAL POPULATIONS [J].
NICHOLSON, AJ .
AUSTRALIAN JOURNAL OF ZOOLOGY, 1954, 2 (01) :9-65
[8]  
PIELOU E C, 1969, P286