N-CONCAVITY OF N-DIMENSIONAL COMPLEX-SPACES

被引:10
作者
COLTOIU, M
机构
[1] Institute of Mathematics of the Romanian Academy, Bucharest, RO-70700
关键词
D O I
10.1007/BF02571792
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:203 / 206
页数:4
相关论文
共 50 条
[21]   n-Dimensional dual complex numbers [J].
Paul Fjelstad ;
Sorin G. Gal .
Advances in Applied Clifford Algebras, 1998, 8 (2) :309-322
[22]   On the rigid rotation concept in n-dimensional spaces [J].
Mortari, D .
JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2001, 49 (03) :401-420
[23]   INTERSECTION MULTIPLICITY OF N-DIMENSIONAL PARACOMPACT SPACES [J].
WELLER, GP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 50 (JUL) :402-404
[24]   EXTENSION OF EULER THEOREM TO N-DIMENSIONAL SPACES [J].
BARITZHACK, IY .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1989, 25 (06) :903-909
[25]   n-Dimensional hyperbolic complex numbers [J].
Paul Fjelstad ;
Sorin G. Gal .
Advances in Applied Clifford Algebras, 1998, 8 (1) :47-68
[26]   Solutions of Laplace Equation in n-Dimensional Spaces [J].
冯晶晶 ;
黄玲 ;
杨师杰 .
CommunicationsinTheoreticalPhysics, 2011, 56 (10) :623-625
[27]   Solutions of Laplace Equation in n-Dimensional Spaces [J].
Feng Jing-Jing ;
Huang Ling ;
Yang Shi-Jie .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (04) :623-625
[28]   A representation of convex surfaces in n-dimensional spaces [J].
Ligun, AA ;
Shumeiko, AA ;
Timchenko, SV .
DOKLADY MATHEMATICS, 2001, 63 (02) :158-160
[29]   POSITIVITY OF ENERGY IN N-DIMENSIONAL LORENTZIAN SPACES [J].
TAUB, AH .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (01) :55-62
[30]   On the Rigid Rotation Concept in n-Dimensional Spaces [J].
Mortari, Daniele .
1600, Springer (49)