N-CONCAVITY OF N-DIMENSIONAL COMPLEX-SPACES

被引:10
作者
COLTOIU, M
机构
[1] Institute of Mathematics of the Romanian Academy, Bucharest, RO-70700
关键词
D O I
10.1007/BF02571792
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:203 / 206
页数:4
相关论文
共 50 条
[11]   Representing orientation in n-dimensional spaces [J].
Rieger, B ;
van Vliet, LJ .
COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2003, 2756 :17-24
[12]   ON THE EXISTENCE OF WEAKLY N-DIMENSIONAL SPACES [J].
VANMILL, J ;
POL, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 113 (02) :581-585
[13]   On the dimension of almost n-dimensional spaces [J].
Levin, M ;
Tymchatyn, ED .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (09) :2793-2795
[14]   Note on weakly n-dimensional spaces [J].
van Mill, J ;
Pol, R .
MONATSHEFTE FUR MATHEMATIK, 2001, 132 (01) :25-33
[15]   Note on Weakly n-Dimensional Spaces [J].
Jan van Mill ;
Roman Pol .
Monatshefte für Mathematik, 2001, 132 :25-33
[16]   Symmetry of n-dimensional packing spaces [J].
Maleev, AV ;
Lysov, AE ;
Potekhin, KA .
CRYSTALLOGRAPHY REPORTS, 1998, 43 (05) :721-727
[17]   N-Dimensional Binary Vector Spaces [J].
Arai, Kenichi ;
Okazaki, Hiroyuki .
FORMALIZED MATHEMATICS, 2013, 21 (02) :75-81
[18]   CHARACTER OF CERTAIN TYPES OF COMPLEX EQUILIBRIUM STATE IN N-DIMENSIONAL SPACES [J].
MINTS, RM .
DOKLADY AKADEMII NAUK SSSR, 1962, 147 (01) :31-&
[19]   On the topology and the boundary of N-dimensional RCD (K, N) spaces [J].
Kapovitch, Vitali ;
Mondino, Andrea .
GEOMETRY & TOPOLOGY, 2021, 25 (01) :445-495
[20]   The N-dimensional complex delta distribution [J].
Hahn, SL .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (07) :1833-1837