SMALL EMBEDDINGS FOR PARTIAL CYCLE SYSTEMS OF ODD LENGTH

被引:5
作者
LINDNER, CC [1 ]
RODGER, CA [1 ]
STINSON, DR [1 ]
机构
[1] UNIV MANITOBA,DEPT COMP SCI,WINNIPEG R3T 2N2,MANITOBA,CANADA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
D O I
10.1016/0012-365X(90)90247-F
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if m is odd then a partial m-cycle system on n vertices can be embedded in an m-cycle system on at most m((m - 2)n(n - 1) + 2n + 1) vertices and that a partial weak Steiner m-cycle system on n vertices can be embedded in an m-cycle system on m(2n + 1) vertices. © 1990.
引用
收藏
页码:273 / 280
页数:8
相关论文
共 11 条
[1]  
ANDERSEN LD, 1980, P LOND MATH SOC, V41, P557
[2]  
BONDY JA, 1976, GRAPH THEORY APPLICA
[3]   EMBEDDING PARTIAL GRAPH DESIGNS, BLOCK-DESIGNS, AND TRIPLE-SYSTEMS WITH LAMBDA-GREATER-THAN-1 [J].
COLBOURN, CJ ;
HAMM, RC ;
LINDNER, CC ;
RODGER, CA .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1986, 29 (04) :385-391
[4]  
Cruse A. B., 1974, Journal of Combinatorial Theory, Series A, V16, P18, DOI 10.1016/0097-3165(74)90068-5
[5]   ALMOST RESOLVABLE DECOMPOSITIONS OF 2KN INTO CYCLES OF ODD LENGTH [J].
HEINRICH, K ;
LINDNER, CC ;
RODGER, CA .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1988, 49 (02) :218-232
[6]   NESTING AND ALMOST RESOLVABILITY OF PENTAGON SYSTEMS [J].
LINDNER, CC ;
RODGER, CA .
EUROPEAN JOURNAL OF COMBINATORICS, 1988, 9 (05) :483-493
[7]   STEINER PENTAGON SYSTEMS [J].
LINDNER, CC ;
STINSON, DR .
DISCRETE MATHEMATICS, 1984, 52 (01) :67-74
[8]   PARTIAL STEINER TRIPLE SYSTEM OF ORDER ETA CAN BE EMBEDDED IN A STEINER TRIPLE SYSTEM OF ORDER 6N + 3 [J].
LINDNER, CC .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1975, 18 (03) :349-351
[9]  
LINDNER CC, IN PRESS ANN DISCRET
[10]  
TREASH C, 1971, J COMB THEORY A, V10, P259