THE GLOBAL THEORY OF DOUBLY PERIODIC MINIMAL-SURFACES

被引:48
作者
MEEKS, WH [1 ]
ROSENBERG, H [1 ]
机构
[1] UNIV PARIS 07,DEPT MATH,F-75251 PARIS 05,FRANCE
关键词
D O I
10.1007/BF01389046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:351 / 379
页数:29
相关论文
共 35 条
[1]  
ANDERSON D, 1988, NATURE, V334, P598
[2]  
ANDERSON MT, 1985, ANN SCI ECOLE NORM S, V18, P89
[3]   EMBEDDED MINIMAL-SURFACES WITH AN INFINITE NUMBER OF ENDS [J].
CALLAHAN, M ;
HOFFMAN, D ;
MEEKS, WH .
INVENTIONES MATHEMATICAE, 1989, 96 (03) :459-505
[4]  
CALLAHAN M, STRUCTURE SINGLY PER
[5]  
COI T, IN PRESS J DIFFER GE
[6]   Minimal surfaces of higher topological structure [J].
Douglas, J .
ANNALS OF MATHEMATICS, 1939, 40 :205-298
[7]  
Fischer-Colbrie D., 1985, INVENT MATH, V82, P121
[8]  
FROHMAN C, TOPOLOGICAL UNIQUENE
[9]   BOUNDARY-REGULARITY AND EMBEDDED SOLUTIONS FOR THE ORIENTED PLATEAU-PROBLEM [J].
HARDT, R ;
SIMON, L .
ANNALS OF MATHEMATICS, 1979, 110 (03) :439-486
[10]   A VARIATIONAL APPROACH TO THE EXISTENCE OF COMPLETE EMBEDDED MINIMAL-SURFACES [J].
HOFFMAN, D ;
MEEKS, WH .
DUKE MATHEMATICAL JOURNAL, 1988, 57 (03) :877-893