About the Optimal Replacement of the Lebesque Constant Fourier Operator by a Logarithmic Function

被引:7
作者
Shakirov, I. A. [1 ]
机构
[1] Naberezhnye Chelny State Pedag Univ, Ul Nizametdinova 28, Naberezhniye Chelny 423806, Russia
关键词
Fourier operator; Lebesgue constant; asymptotic equality; the best approximation of a Lebesgue constant;
D O I
10.1134/S1995080218060185
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Lebesgue constant, corresponding to the classical Fourier operator is approaching a two-parameter family of logarithmic functions. The optimal values of these parameters are found in which the best uniform approximation of the Lebesgue constant a well-defined function of this family is achieved. We considered the case when corresponding to these functions the remaining members are strictly decreasing.
引用
收藏
页码:841 / 846
页数:6
相关论文
共 9 条
[1]  
AKHIEZER NI, 1965, LECT THEORY APPROXIM
[2]  
Fejer L, 1910, J REINE ANGEW MATH, V138, P22
[3]  
Galkin P. V., 1971, MIAN USSR, V109, P3
[4]  
Korneichuk NP., 1987, EXACT CONSTANTS APPR
[5]  
Natanson G. I., 1986, GEOMETRIC PROBLEMS T, P102
[6]   Influence of the choice of Lagrange interpolation nodes on the exact and approximate values of the Lebesgue constants [J].
Shakirov, I. A. .
SIBERIAN MATHEMATICAL JOURNAL, 2014, 55 (06) :1144-1160
[7]   On the Lebeogue constants in Fourier series. [J].
Szego, G .
MATHEMATISCHE ZEITSCHRIFT, 1921, 9 :163-166
[8]  
Watson G. H., 1930, Q J MATH OXFORD SER, V1, P310
[9]  
Zigmund A., 1968, TRIGONOMETRIC SERIES, V1