ON RECONSTRUCTABILITY OF CLASSICAL PROPOSITIONAL LOGIC IN INTUITIONISTIC LOGIC

被引:0
作者
WOJCICKI, R
机构
来源
BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES | 1970年 / 18卷 / 08期
关键词
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
引用
收藏
页码:421 / &
相关论文
共 50 条
[41]   FUNCTIONAL COMPLETENESS FOR SUBSYSTEMS OF INTUITIONISTIC PROPOSITIONAL LOGIC [J].
WANSING, H .
JOURNAL OF PHILOSOPHICAL LOGIC, 1993, 22 (03) :303-321
[42]   A note on decidability of variables in intuitionistic propositional logic [J].
Ishii, Katsumasa .
MATHEMATICAL LOGIC QUARTERLY, 2018, 64 (03) :183-184
[43]   A Forward Unprovability Calculus for Intuitionistic Propositional Logic [J].
Fiorentini, Camillo ;
Ferrari, Mauro .
AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, TABLEAUX 2017, 2017, 10501 :114-130
[44]   Propositional quantification in the monadic fragment of intuitionistic logic [J].
Polacik, T .
JOURNAL OF SYMBOLIC LOGIC, 1998, 63 (01) :269-300
[45]   Intuitionistic choice and classical logic [J].
Thierry Coquand ;
Erik Palmgren .
Archive for Mathematical Logic, 2000, 39 :53-74
[46]   An intuitionistic characterization of classical logic [J].
Hsiung, Ming .
JOURNAL OF PHILOSOPHICAL LOGIC, 2008, 37 (04) :299-317
[47]   AN INTUITIONISTIC CHARACTERIZATION OF CLASSICAL LOGIC [J].
Ming Hsiung .
Journal of Philosophical Logic, 2008, 37 :299-317
[48]   Intuitionistic choice and classical logic [J].
Coquand, T ;
Palmgren, E .
ARCHIVE FOR MATHEMATICAL LOGIC, 2000, 39 (01) :53-74
[49]   A Proof-Theoretic Analysis of the Meaning of a Formula in a Combination of Intuitionistic and Classical Propositional Logic [J].
Toyooka, Masanobu .
LOGIC AND ENGINEERING OF NATURAL LANGUAGE SEMANTICS, LENLS19, 2023, 14213 :100-119
[50]   Isomorphic formulae in classical propositional logic [J].
Dosen, Kosta ;
Petric, Zoran .
MATHEMATICAL LOGIC QUARTERLY, 2012, 58 (1-2) :5-17