2'-HYDROXYL GROUPS IMPORTANT FOR EXON POLYMERIZATION AND REVERSE EXON LIGATION REACTIONS CATALYZED BY A GROUP-I RIBOZYME

被引:5
作者
BERZALHERRANZ, A [1 ]
CHOWRIRA, BM [1 ]
POLSENBERG, JF [1 ]
BURKE, JM [1 ]
机构
[1] UNIV VERMONT,DEPT MICROBIOL & MOLEC GENET,MARKEY CTR MOLEC GENET,STAFFORD HALL,BURLINGTON,VT 05405
关键词
D O I
10.1021/bi00086a001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The functional importance of ribose moieties in both exons and in intron sequences proximal to the 3' splice site of a group I intron has been analyzed using a novel exon polymerization reaction. The ribozyme is a modified version of a self-splicing bacterial tRNA intron (I) that attacks a 20-nucleotide synthetic ligated exon substrate (E1.E2), yielding E1 and I.E2 by reverse exon ligation. A series of repetitive reactions then polymerize E2 on the 3' end of the intron; attack by E1 subsequently generates E1.(E2)n. Systematic deoxyribonucleotide substitution within E1.E2 was used to probe the function of 2'-hydroxyl groups in each exon and the 3'-terminal nucleotides of the intron. We find that ribose at the splice junction (U-1) and at the two adjacent positions with E1 (A-2, C-3) is important for reverse exon ligation. Within E2, deletion of 2'-hydroxyl groups of the nucleotides that form P10 does not affect reactivity. In contrast, ribose at the 3' end of the intron is essential for reverse exon ligation, and the presence of a 2'-OH group in each of the nucleotides comprising P9.0[3'] contributes to reaction efficiency. These results support a model in which specific 2'-hydroxyl groups at and adjacent to the reaction sites form tertiary contacts that serve to stabilize interactions with the catalytic core of the ribozyme. Furthermore, they suggest that the mechanism by which guanosine at the 3' end of the intron is activated for reverse exon ligation is the same as that by which guanosine mononucleotide is activated in the first step of splicing.
引用
收藏
页码:8981 / 8986
页数:6
相关论文
共 38 条
[21]   MECHANISM OF 3' SPLICE SITE SELECTION BY THE CATALYTIC CORE OF THE STATE-UNIVERSITY-OF-NEW-YORK INTRON OF BACTERIOPHAGE-T4 - THE ROLE OF A NOVEL BASE-PAIRING INTERACTION IN GROUP-I INTRONS [J].
MICHEL, F ;
NETTER, P ;
XU, MQ ;
SHUB, DA .
GENES & DEVELOPMENT, 1990, 4 (05) :777-788
[22]   THE GUANOSINE BINDING-SITE OF THE TETRAHYMENA RIBOZYME [J].
MICHEL, F ;
HANNA, M ;
GREEN, R ;
BARTEL, DP ;
SZOSTAK, JW .
NATURE, 1989, 342 (6248) :391-395
[23]   SITE-SPECIFIC MODIFICATION OF PRE-MESSENGER-RNA - THE 2'-HYDROXYL GROUPS AT THE SPLICE SITES [J].
MOORE, MJ ;
SHARP, PA .
SCIENCE, 1992, 256 (5059) :992-997
[24]   STUDY OF A HAMMERHEAD RIBOZYME CONTAINING 2'-MODIFIED ADENOSINE RESIDUES [J].
OLSEN, DB ;
BENSELER, F ;
AURUP, H ;
PIEKEN, WA ;
ECKSTEIN, F .
BIOCHEMISTRY, 1991, 30 (40) :9735-9741
[25]   IMPORTANT 2'-HYDROXYL GROUPS IN MODEL SUBSTRATES FOR M1 RNA, THE CATALYTIC RNA SUBUNIT OF RNASE-P FROM ESCHERICHIA-COLI [J].
PERREAULT, JP ;
ALTMAN, S .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 226 (02) :399-409
[26]   RELATIONSHIP BETWEEN 2'-HYDROXYLS AND MAGNESIUM BINDING IN THE HAMMERHEAD RNA DOMAIN - A MODEL FOR RIBOZYME CATALYSIS [J].
PERREAULT, JP ;
LABUDA, D ;
USMAN, N ;
YANG, JH ;
CEDERGREN, R .
BIOCHEMISTRY, 1991, 30 (16) :4020-4025
[27]   MIXED DEOXYRIBONUCLEOTIDES AND RIBOOLIGONUCLEOTIDES WITH CATALYTIC ACTIVITY [J].
PERREAULT, JP ;
WU, TF ;
COUSINEAU, B ;
OGILVIE, KK ;
CEDERGREN, R .
NATURE, 1990, 344 (6266) :565-567
[28]   KINETIC CHARACTERIZATION OF RIBONUCLEASE-RESISTANT 2'-MODIFIED HAMMERHEAD RIBOZYMES [J].
PIEKEN, WA ;
OLSEN, DB ;
BENSELER, F ;
AURUP, H ;
ECKSTEIN, F .
SCIENCE, 1991, 253 (5017) :314-317
[29]   RIBOZYME RECOGNITION OF RNA BY TERTIARY INTERACTIONS WITH SPECIFIC RIBOSE 2'-OH GROUPS [J].
PYLE, AM ;
CECH, TR .
NATURE, 1991, 350 (6319) :628-631
[30]   RNA SUBSTRATE BINDING-SITE IN THE CATALYTIC CORE OF THE TETRAHYMENA RIBOZYME [J].
PYLE, AM ;
MURPHY, FL ;
CECH, TR .
NATURE, 1992, 358 (6382) :123-131