SOME SUBCLASSES OF ANALYTIC FUNCTIONS OF COMPLEX ORDER DEFINED BY NEW DIFFERENTIAL OPERATOR

被引:3
作者
Darus, Maslina [1 ]
Faisal, Imran [1 ]
机构
[1] Univ Kebangsaan Malaysia, Sch Math Sci, Fac Sci & Technol, Bangi 43600, Selangor D Ehsa, Malaysia
来源
TAMKANG JOURNAL OF MATHEMATICS | 2012年 / 43卷 / 02期
关键词
Neighborhoods properties; analytic functions; inclusion properties; identity function; (n; delta)-neighborhoods; differential operator; convex function; coefficient estimates; growth and distortion theorems; Hadamard product; extreme points; integral means inequalities;
D O I
10.5556/j.tkjm.43.2012.223-242
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A(n) denote the class of analytic functions f in the open unit disk U = {z : vertical bar z vertical bar < 1} normalized by f (0) = f' (0) - 1 = 0. In this paper, we introduce and study the classes S-n,S- mu(gamma, alpha, beta, lambda, (sic)) and R-n,R- mu(gamma, alpha, beta, lambda, (sic)) of functions f is an element of A(n) with (mu)z(D-lambda((sic)+2) (alpha, omega) f (z))' + (1 - mu)z(D-lambda((sic)+1) (alpha, omega) f (z))' not equal 0 and satisfy some conditions available in literature, where f is an element of A(n), alpha, omega, lambda, mu >= 0, (sic) is an element of N boolean OR{0}, z is an element of U, and D-lambda(m) (alpha, omega) f (z) : A -> A, is the linear fractional differential operator, newly defined as follows D-lambda(m) (alpha, omega) f (z) = z + Sigma(infinity)(k = 2) a(k) (1 + (k - 1)lambda omega(alpha))(m) z(k). Several properties such as coefficient estimates, growth and distortion theorems, extreme points, integralmeans inequalities and inclusion for the functions included in the classes S-n,S- mu(gamma, alpha, beta, lambda, (sic), omega) and R-n,R- mu(gamma, alpha, beta, lambda, (sic), omega) are given.
引用
收藏
页码:223 / 242
页数:20
相关论文
共 31 条
  • [1] Al- Abbadi M. H., 2010, INT J MATH MATH SCI, V2010
  • [2] Al-Oboudi F.M., 2004, INT J MATH MATH SCI, V2004, P172525, DOI [DOI 10.1155/S0161171204108090, 10.1155/S0161171204108090]
  • [3] Al-Refai O., 2009, J MATH STAT, V1, P77
  • [4] Main differential sandwich theorem with some applications
    Al-Refai O.
    Darus M.
    [J]. Lobachevskii Journal of Mathematics, 2009, 30 (1) : 1 - 11
  • [5] Al-Shaqsi K., 2008, J MATH STAT, V4, P46
  • [6] Neighborhoods of a certain family of multivalent functions with negative coefficients
    Altintas, O
    Özkan, Ö
    Srivastava, HM
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (10-11) : 1667 - 1672
  • [7] Neighborhoods of a class of analytic functions with negative coefficients
    Altintas, O
    Özkan, Ö
    Srivastava, HM
    [J]. APPLIED MATHEMATICS LETTERS, 2000, 13 (03) : 63 - 67
  • [8] Altintas O., 1996, INT J MATH MATH SCI, V19, P797, DOI [10.1155/S016117129600110X, DOI 10.1155/S016117129600110X]
  • [9] Aouf M. K., 1994, B KOREAN MATH SOC, V31, P269
  • [10] Attiya A. A., 2007, SOOCHOW J MATH, V33, P273