A GENERALIZATION OF SELBERG BETA-INTEGRAL

被引:68
作者
GUSTAFSON, RA
机构
[1] Department of Mathematics, Texas A and M University, College Station, TX
关键词
D O I
10.1090/S0273-0979-1990-15852-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We evaluate several infinite families of multidimensional integrals which are generalizations or analogs of Euler’s classical beta integral. We first evaluate a q-analog of Selberg’s beta integral. This integral is then used to prove the Macdonald-Morris conjectures for the affine root systems of types S(Cl) and S(Cl)Vand to give a new proof of these conjectures for S(BCl), S(Bl), S(Bl)Vand S(Dl). © 1990 American Mathematical Society.
引用
收藏
页码:97 / 105
页数:9
相关论文
共 25 条
[1]  
Andrews G.E., 1975, THEORY APPL SPECIAL, V35, P191, DOI DOI 10.1016/B978-0-12-064850-4.50008-2
[2]  
[Anonymous], 1967, RANDOM MATRICES
[3]   JACOBI-POLYNOMIALS ASSOCIATED WITH SELBERG INTEGRALS [J].
AOMOTO, K .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (02) :545-549
[4]  
ASKEY R, PREPRINT
[5]  
ASKEY R, 1985, MEM AM MATH SOC, V319
[6]  
Barnes EW, 1908, P LOND MATH SOC, V6, P141
[7]  
DEBRANGES L, 1972, J MATH ANAL APPL, V38, P109
[8]  
DYSON FJ, 1962, J MATH PHYS, V3, P140, DOI 10.1063/1.1703773
[9]  
GARVAN F, PREPRINT
[10]   PROOF OF A CONJECTURE BY DYSON IN STATISTICAL THEORY OF ENERGY LEVELS [J].
GUNSON, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (04) :752-&