NEW QUANTUM POINCARE ALGEBRA AND KAPPA-DEFORMED FIELD-THEORY

被引:527
作者
LUKIERSKI, J [1 ]
NOWICKI, A [1 ]
RUEGG, H [1 ]
机构
[1] UNIV BORDEAUX,PHYS THEOR LAB,F-33175 GRANDIGNAN,FRANCE
关键词
D O I
10.1016/0370-2693(92)90894-A
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We derive a new real quantum Poincare algebra with standard real structure, obtained by contraction of U(q)(O(3, 2)) (q real), which is a standard real Hopf algebra, depending on a dimension-full parameter kappa instead of q. For our real quantum Poincare algebra both Casimirs are given. The free scalar kappa-deformed quantum field theory is considered. it appears that the kappa-parameter introduced nonlocal q-time derivatives with In q approximately 1/kappa.
引用
收藏
页码:344 / 352
页数:9
相关论文
共 26 条
[1]   THE QUANTUM HEISENBERG-GROUP H(1)Q [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) :1155-1158
[2]   THE 3-DIMENSIONAL EUCLIDEAN QUANTUM GROUP E(3)Q AND ITS R-MATRIX [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) :1159-1165
[3]  
CELEGHINI E, 1991, 1ST P EIMI WORKSH QU
[4]  
CELEGHINI E, DFF1511191 U FLOR PR
[5]  
DOBREV V, 1991, CANONICAL Q DEFORMAT
[6]  
Drinfeld V.G., 1989, ALGEBRA ANAL, V1, P30
[7]  
Faddeev L.D., 1989, ALGEBRA ANALIZ, P178
[8]   MORE ABOUT THE Q-DEFORMED POINCARE ALGEBRA [J].
GILLER, S ;
KOSINSKI, P ;
MAJEWSKI, M ;
MASLANKA, P ;
KUNZ, J .
PHYSICS LETTERS B, 1992, 286 (1-2) :57-62
[9]  
JACKSON FN, 1910, APPL MATH, V41, P143
[10]  
KOSINSKI P, COMMUNICATION