On the complexity of determining the irregular chromatic index of a graph

被引:22
作者
Baudon, Olivier [1 ,2 ]
Bensmail, Julien [1 ,2 ]
Sopena, Eric [1 ,2 ]
机构
[1] Univ Bordeaux, LaBRI, UMR5800, F-33400 Talence, France
[2] CNRS, LaBRI, UMR5800, F-33400 Talence, France
关键词
Edge-colouring; Irregular chromatic index; Irregular graph; Locally irregular graph;
D O I
10.1016/j.jda.2014.12.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An undirected simple graph G is locally irregular if adjacent vertices of G have different degrees. Anedge-colouring phi of G is locally irregular if each colour class of phi induces a locally irregular subgraph ofG. The irregular chromatic index chi'(irr)(G) of G is the least number of colours used by a locally irregular edge-colouring ofG(if any). We show that the problem of determining the irregular chromatic index of a graph can be handled in linear time when restricted to trees, but it remains NP-complete in general. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:113 / 127
页数:15
相关论文
共 10 条
[1]   Vertex colouring edge partitions [J].
Addario-Berry, L ;
Aldred, REL ;
Dalal, K ;
Reed, BA .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 94 (02) :237-244
[2]   HIGHLY IRREGULAR GRAPHS [J].
ALAVI, Y ;
CHARTRAND, G ;
CHUNG, FRK ;
ERDOS, P ;
GRAHAM, RL ;
OELLERMANN, OR .
JOURNAL OF GRAPH THEORY, 1987, 11 (02) :235-249
[3]  
Baudon O., 2013, PREPRINT
[4]  
Chartrand G., 1988, C NUMER, V64, P197
[5]   Algorithmic complexity of proper labeling problems [J].
Dehghan, Ali ;
Sadeghi, Mohammad-Reza ;
Ahadi, Arash .
THEORETICAL COMPUTER SCIENCE, 2013, 495 :25-36
[6]  
Garey MR., 1979, COMPUTERS INTRACTABI
[7]   Edge weights and vertex colours [J].
Karonski, M ;
Luczak, T ;
Thomason, A .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 91 (01) :151-157
[8]   A tight bound on the irregularity strength of graphs [J].
Nierhoff, T .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2000, 13 (03) :313-323
[9]  
Przybylo J, 2010, DISCRETE MATH THEOR, V12, P43
[10]  
Seamone B., 2012, TECHNICAL REPORT