NUMERICAL-SOLUTION OF AN EVOLUTION EQUATION WITH A POSITIVE-TYPE MEMORY TERM

被引:165
作者
MCLEAN, W [1 ]
THOMEE, V [1 ]
机构
[1] CHALMERS UNIV TECHNOL,DEPT MATH,S-41296 GOTHENBURG,SWEDEN
来源
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS | 1993年 / 35卷
关键词
D O I
10.1017/S0334270000007268
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the numerical solution of an initial-boundary value problem for a Volterra type integro-differential equation, in which the integral operator is a convolution product of a positive-definite kernel and an elliptic partial-differential operator. The equation is discretised in space by the Galerkin finite-element method and in time by finite differences in combination with various quadrature rules which preserve the positive character of the memory term. Special attention is paid to the case of a weakly singular kernel. Error estimates are derived and numerical experiments reported.
引用
收藏
页码:23 / 70
页数:48
相关论文
共 22 条
[1]  
Butzer P. L., 1971, FOURIER ANAL APPROXI
[2]  
CHOI UJ, 1989, VOLTERRA INTEGRODIFF, V190, P231
[3]  
Ciarlet P. G., 2002, FINITE ELEMENT METHO
[4]   THE STABILITY IN LP AND W-P-1 OF THE L2-PROJECTION ONTO FINITE-ELEMENT FUNCTION-SPACES [J].
CROUZEIX, M ;
THOMEE, V .
MATHEMATICS OF COMPUTATION, 1987, 48 (178) :521-532
[5]  
Dafermos C. M., 1979, COMMUN PART DIFF EQ, V4, P219
[6]   GALERKIN METHODS FOR PARABOLIC EQUATIONS [J].
DOUGLAS, J ;
DUPONT, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (04) :575-&
[7]  
FAIRWEATHER G, 1989, SPLINE COLLOCATION M
[8]   CARACTERISATION DE QUELQUES ESPACES DINTERPOLATION [J].
GRISVARD, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1967, 25 (01) :40-&
[9]  
Lions JL., 1972, NONHOMOGENEOUS BOUND, V1
[10]   INTEGRODIFFERENTIAL VOLTERRA EQUATION WITH A MAXIMAL MONOTONE MAPPING [J].
LONDEN, SO .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 27 (03) :405-420