FULLY NONLINEAR NEUMANN TYPE BOUNDARY-CONDITIONS FOR 2ND-ORDER ELLIPTIC AND PARABOLIC EQUATIONS

被引:68
作者
BARLES, G
机构
[1] Faculté des Sciences et Techniques, Université de Tours, 37200 Tours, Parc Grandmont
关键词
D O I
10.1006/jdeq.1993.1100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:90 / 106
页数:17
相关论文
共 22 条
[1]  
BARLES G, IN PRESS NONLINEAR A
[2]  
BENSOUSSAN A, 1978, APPLICATIONS INEQUAT, V6
[3]  
BVENSOUSSAN A, 1982, METHODES MATHEMATIQU, V11
[4]   SOME PROPERTIES OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
EVANS, LC ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :487-502
[5]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[6]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[7]   ON OBLIQUE DERIVATIVE PROBLEMS FOR FULLY NONLINEAR 2ND-ORDER ELLIPTIC PARTIAL-DIFFERENTIAL EQUATIONS ON NONSMOOTH DOMAINS [J].
DUPUIS, P ;
ISHII, H .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 15 (12) :1123-1138
[8]  
DUPUIS P, IN PRESS ANN PROBAB
[9]  
FLEMING W, UNPUB
[10]  
Gilbarg D., 1983, ELLIPTIC PARTIAL DIF