ITERATIVE SOLUTION OF BEM EQUATIONS BY GMRES ALGORITHM

被引:37
作者
BARRA, LPS
COUTINHO, ALGA
MANSUR, WJ
TELLES, JCF
机构
[1] Department of Civil Engineering, COPPE/Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21945
关键词
D O I
10.1016/0045-7949(92)90369-B
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a performance study of the GMRES algorithm for the solution of non-symmetric dense systems of equations arising from the boundary element discretization of two-dimensional elasticity. Comparisons with Gauss elimination and bi-conjugate gradients show the computer effectiveness and accuracy of the preconditioned GMRES algorithm.
引用
收藏
页码:1249 / 1253
页数:5
相关论文
共 8 条
[1]   A TAXONOMY FOR CONJUGATE-GRADIENT METHODS [J].
ASHBY, SF ;
MANTEUFFEL, TA ;
SAYLOR, PE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (06) :1542-1568
[2]  
Brebbia C.A., 1984, BOUNDARY ELEMENT TEC
[3]  
Dongarra JJ, 1991, SOLVING LINEAR SYSTE
[4]  
HAGEMAN LA, 1981, APPLIED ITERATIVE ME
[5]   SOLUTION OF BEM SYSTEMS OF EQUATIONS VIA ITERATIVE TECHNIQUES [J].
MANSUR, WJ ;
ARAUJO, FC ;
MALAGHINI, JEB .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1992, 33 (09) :1823-1841
[6]  
Saad Y., 1986, SIAM J SCI STAT COMP, V7, P869
[7]   A MULTI-ELEMENT GROUP PRECONDITIONED GMRES ALGORITHM FOR NONSYMMETRIC SYSTEMS ARISING IN FINITE-ELEMENT ANALYSIS [J].
SHAKIB, F ;
HUGHES, TJR ;
JOHAN, Z .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1989, 75 (1-3) :415-456
[8]  
Simon, 1988, SOC PET ENG J RES EN, V3, P302