MODIFIED GALERKIN METHOD FOR THE SECOND ORDER EQUATION OF MIXED TYPE AND ESTIMATE OF ITS ERROR

被引:6
作者
Egorov, I. E. [1 ]
Fedorov, V. E. [1 ]
Tikhonova, I. M. [1 ]
机构
[1] Math Sci Res Inst NEFU, Yakutsk, Russia
来源
BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE | 2016年 / 9卷 / 04期
关键词
equation of mixed type; boundary value problem; approximate solution; Galerkin method; error estimation; regularization;
D O I
10.14529/mmp160403
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the boundary value problem for the second order equation of mixed type with an arbitrary manifold of type changing. The theory of such equations is based on the applications, in particular, of the transonic gas dynamics. We study equation of elliptic type near the bottom of the cylindrical domain and the hyperbolic or elliptic type near the top of the cylindrical domain. The last case was formulated and studied by authors with another method in the early works. We proved an error estimate for the modified Galerkin method using the regularization parameter and eigenvalues of the Dirichlet problem for the Laplas equation.
引用
收藏
页码:30 / 39
页数:10
相关论文
共 14 条
[1]  
Chueshev A. B., 2001, RAZRESHIMOST KRAEVIK
[2]  
Djuraev T. D., 1979, KRAEVIE ZADACHI DLYA
[3]  
Egorov I.E., 1995, NEKLASSICHESKIE URAV
[4]  
Egorov I. E., 1999, MAT ZAMETKI YAKUTSK, V6, P26
[5]  
Egorov I. E., 2012, MAT ZAMETKI, V19, P20
[6]  
Egorov I. E., 2014, YAKUTIAN MATH J, P14
[7]  
Egorov I. E., 2010, MAT ZAMETKI, V17, P41
[8]  
KARATOPRAKLIEV GD, 1976, DOKL AKAD NAUK SSSR+, V230, P769
[9]  
Kuzmin A. G., 1990, NEKLASICHESKIE URAVE
[10]  
Moiseev E.I., 1988, URAVNENIYA SMESHANNO