ON THE IRRATIONALITY OF SIGMA (1/(QN+R))

被引:45
作者
BORWEIN, PB [1 ]
机构
[1] DALHOUSIE UNIV,DEPT MATH STAT & COMP SCI,HALIFAX B3H 4J3,NS,CANADA
关键词
D O I
10.1016/S0022-314X(05)80041-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if q is an integer greater than one and r is a non-zero rational (r≠-qm) then Σn=1∞ (1/(qn+r)) is irrational and is not a Liouville number. © 1991 Academic Press, Inc.
引用
收藏
页码:253 / 259
页数:7
相关论文
共 14 条
[1]  
AKSEY R, 1984, MEM AM MATH SOC, V49
[2]  
BAKER GA, 1981, PADE APPROXIMANTS 1, V2
[3]  
BAKER GA, 1981, PADE APPROXIMANTS 1, V1
[4]  
Borwein J. M., 1987, PI AGM STUDY ANAL NU
[5]  
BORWEIN PB, 1988, CONSTR APPROX, V4, P391
[6]   RATIONAL-APPROXIMATIONS TO STIELTJES TRANSFORMS [J].
BORWEIN, PB .
MATHEMATICA SCANDINAVICA, 1983, 53 (01) :114-124
[7]  
CHUNDNOVSKY DV, 1984, LECTURE NOTES MATH, V1052
[8]  
ERDOS P, 1980, ENSEIGN MATH
[9]  
Erdos P., 1948, J INDIAN MATH SOC, V12, P63
[10]  
Exton M., 1983, Q HYPERGEOMETRIC FUN