INTERCHANGEABLE RNA-POLYMERASE-I AND POLYMERASE-II ENHANCERS

被引:14
作者
LORCH, Y
LUE, NF
KORNBERG, RD
机构
[1] Department of Cell Biology, Fairchild Center, Stanford Univ. Sch. of Med., Stanford
关键词
Saccharomyces cerevisiae; thymidine-rich element; transcription; upstream activation sequence;
D O I
10.1073/pnas.87.21.8202
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The RNA polymerase I (pol I) enhancer of Saccharomyces cerevisiae contains at least three elements commonly associated with RNA polymerase II (pol II) enhancers, binding sites for the transcriptional activators general regulatory factor 2 and autonomously replicating sequence-binding factor I, and a thymidine-rich element. When the particular form of the thymidine-rich element found in the pol I enhancer was placed in front of a pol II promoter, transcription was stimulated 43-fold, comparable to the effect of a powerful pol II activator such as Gal4. Conversely, when two copies of a thymidine-rich element from a pol II enhancer were placed upstream of a pol I promoter, transcription was stimulated 38-fold. This functional reciprocity of pol I and II enhancers may reflect similarities in the mechanisms of transcriptional activation. The pol I enhancer also contains an element that appears to be pol I-specific and prevent the activation of pol II.
引用
收藏
页码:8202 / 8206
页数:5
相关论文
共 38 条
[1]   EXTENSIVE HOMOLOGY AMONG THE LARGEST SUBUNITS OF EUKARYOTIC AND PROKARYOTIC RNA-POLYMERASES [J].
ALLISON, LA ;
MOYLE, M ;
SHALES, M ;
INGLES, CJ .
CELL, 1985, 42 (02) :599-610
[3]   A BACTERIAL REPRESSOR PROTEIN OR A YEAST TRANSCRIPTIONAL TERMINATOR CAN BLOCK UPSTREAM ACTIVATION OF A YEAST GENE [J].
BRENT, R ;
PTASHNE, M .
NATURE, 1984, 312 (5995) :612-615
[4]   2 DNA-BINDING FACTORS RECOGNIZE SPECIFIC SEQUENCES AT SILENCERS, UPSTREAM ACTIVATING SEQUENCES, AUTONOMOUSLY REPLICATING SEQUENCES, AND TELOMERES IN SACCHAROMYCES-CEREVISIAE [J].
BUCHMAN, AR ;
KIMMERLY, WJ ;
RINE, J ;
KORNBERG, RD .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (01) :210-225
[5]   A YEAST ARS-BINDING PROTEIN ACTIVATES TRANSCRIPTION SYNERGISTICALLY IN COMBINATION WITH OTHER WEAK ACTIVATING FACTORS [J].
BUCHMAN, AR ;
KORNBERG, RD .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (03) :887-897
[6]   ACTIVATION OF YEAST POLYMERASE-II TRANSCRIPTION BY HERPESVIRUS VP16 AND GAL4 DERIVATIVES INVITRO [J].
CHASMAN, DI ;
LEATHERWOOD, J ;
CAREY, M ;
PTASHNE, M ;
KORNBERG, RD .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (11) :4746-4749
[7]   A YEAST PROTEIN THAT INFLUENCES THE CHROMATIN STRUCTURE OF UASG AND FUNCTIONS AS A POWERFUL AUXILIARY GENE ACTIVATOR [J].
CHASMAN, DI ;
LUE, NF ;
BUCHMAN, AR ;
LAPOINTE, JW ;
LORCH, Y ;
KORNBERG, RD .
GENES & DEVELOPMENT, 1990, 4 (04) :503-514
[8]   CONTROL OF EUKARYOTIC MESSENGER-RNA SYNTHESIS BY SEQUENCE-SPECIFIC DNA-BINDING PROTEINS [J].
DYNAN, WS ;
TJIAN, R .
NATURE, 1985, 316 (6031) :774-778
[9]   AN RNA POLYMERASE-I ENHANCER IN SACCHAROMYCES-CEREVISIAE [J].
ELION, EA ;
WARNER, JR .
MOLECULAR AND CELLULAR BIOLOGY, 1986, 6 (06) :2089-2097
[10]   THE MAJOR PROMOTER ELEMENT OF RIBOSOMAL-RNA TRANSCRIPTION IN YEAST LIES 2 KB UPSTREAM [J].
ELION, EA ;
WARNER, JR .
CELL, 1984, 39 (03) :663-673