Energy, Laplacian energy of double graphs and new families of equienergetic graphs

被引:31
作者
Ganie, Hilal A. [1 ]
Pirzada, Shariefuddin [1 ]
Ivanyi, Antal [2 ]
机构
[1] Univ Kashmir, Srinagar, Jammu & Kashmir, India
[2] Eotvos Lorand Univ, Fac Informat, Budapest, Hungary
关键词
double graph; spectra; energy; Laplacian energy; L-equienergetic; equienergetic;
D O I
10.2478/ausi-2014-0020
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For a graph G with vertex set V(G) = {v(1), v(2),..., v(n)}, the extended double cover G* is a bipartite graph with bipartition (X, Y), X = {x(1), x(2),..., x(n)} and Y = {y(1), y(2),..., y(n)}, where two vertices x(i) and y(j) are adjacent if and only if i = j or vi adjacent to v(i) in G. The double graph D[G] of G is a graph obtained by taking two copies of G and joining each vertex in one copy with the neighbors of corresponding vertex in another copy. In this paper we study energy and Laplacian energy of the graphs G* and D[ G], L-spectra of Gk* the k-th iterated extended double cover of G. We obtain a formula for the number of spanning trees of G*. We also obtain some new families of equienergetic and L-equienergetic graphs.
引用
收藏
页码:89 / 116
页数:28
相关论文
共 30 条
[1]   Bounds for the signless Laplacian energy [J].
Abreu, Nair ;
Cardoso, Domingos M. ;
Gutman, Ivan ;
Martins, Enide A. ;
Robbiano, Maria .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) :2365-2374
[2]  
Aleksic T, 2008, MATCH-COMMUN MATH CO, V60, P435
[3]   The energy of a graph [J].
Balakrishnan, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 387 :287-295
[4]   Constructing pairs of equienergetic and non-cospectral graphs [J].
Bonifacio, Andreas S. ;
Vinagre, Cybele T. M. ;
de Abreu, Nair Maria Maia .
APPLIED MATHEMATICS LETTERS, 2008, 21 (04) :338-341
[5]   A decreasing sequence of upper bounds for the Laplacian energy of a tree [J].
Carmona, Juan ;
Gutman, Ivan ;
Tamblay, Nelda Jaque ;
Robbiano, Maria .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 446 :304-313
[6]   Spectra of extended double cover graphs [J].
Chen, Z .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2004, 54 (04) :1077-1082
[7]  
Cvetkovic D M., 1980, SPECTRA GRAPHS THEOR
[8]   TOWARDS A SPECTRAL THEORY OF GRAPHS BASED ON THE SIGNLESS LAPLACIAN, I [J].
Cvetkovic, Dragos ;
Simic, Slobodan K. .
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2009, 85 (99) :19-33
[9]   On incidence energy of graphs [J].
Das, Kinkar Ch. ;
Gutman, Ivan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 446 :329-344
[10]  
Fath-Tabar GH, 2010, MATH COMMUN, V15, P443