LANGEVIN DYNAMICS OF AN INTERFACE NEAR A WALL

被引:25
作者
ABRAHAM, D
COLLET, P
DECONINCK, J
DUNLOP, F
机构
[1] ECOLE POLYTECH,CTR PHYS THEOR,CNRS,LAB,UPR 14,F-91128 PALAISEAU,FRANCE
[2] UNIV MONS,FAC SCI,B-7000 MONS,BELGIUM
关键词
LANGEVIN DYNAMICS; SOS MODEL; INTERFACE; CONTACT ANGLE; PRECURSOR FILM;
D O I
10.1007/BF01027290
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study dynamical contact angles and precursor films using Langevin dynamics for SOS type models, near a wall which favors spreading. We first solve exactly the Gaussian model and discuss various asymptotic regimes. This is only appropriate to partial wetting. We then consider more general models. Using local equilibrium and scaling arguments, we derive the shape of the dynamical profile and th speed of the precursor film which exists when the spreading coefficient is strictly positive. Long-range potentials lead to a layered structure of the precursor film. We aslo consider the case of a meniscus in a capillary.
引用
收藏
页码:509 / 532
页数:24
相关论文
共 23 条
[1]   CONTACT-ANGLE FOR TWO-DIMENSIONAL ISING-FERROMAGNETS [J].
ABRAHAM, DB ;
DECONINCK, J ;
DUNLOP, F .
PHYSICAL REVIEW B, 1989, 39 (07) :4708-4710
[2]   SOLVABLE MODEL WITH A ROUGHENING TRANSITION FOR A PLANAR ISING FERROMAGNET [J].
ABRAHAM, DB .
PHYSICAL REVIEW LETTERS, 1980, 44 (18) :1165-1168
[3]   EXACT DERIVATION OF THE MODIFIED YOUNG EQUATION FOR PARTIAL WETTING [J].
ABRAHAM, DB ;
KO, LF .
PHYSICAL REVIEW LETTERS, 1989, 63 (03) :275-278
[4]   DYNAMICS OF GAUSSIAN INTERFACE MODELS [J].
ABRAHAM, DB ;
UPTON, PJ .
PHYSICAL REVIEW B, 1989, 39 (01) :736-739
[5]   MAGNETIZATION PROFILE NEAR A WALL IN THE PLANAR ISING FERROMAGNET [J].
ABRAHAM, DB ;
HUSE, DA .
PHYSICAL REVIEW B, 1988, 38 (10) :7169-7172
[6]  
[Anonymous], 1983, PHASE TRANSITIONS CR
[7]   CRITICAL-DYNAMICS OF AN INTERFACE IN 1 + EPSILON DIMENSIONS [J].
BAUSCH, R ;
DOHM, V ;
JANSSEN, HK ;
ZIA, RKP .
PHYSICAL REVIEW LETTERS, 1981, 47 (25) :1837-1840
[9]   HOW DOES A DROPLET SPREAD [J].
CAZABAT, AM .
CONTEMPORARY PHYSICS, 1987, 28 (04) :347-364
[10]   PARTIAL TO COMPLETE WETTING - A MICROSCOPIC DERIVATION OF THE YOUNG RELATION [J].
DECONINCK, J ;
DUNLOP, F .
JOURNAL OF STATISTICAL PHYSICS, 1987, 47 (5-6) :827-849