SOLUTION OF FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL-EQUATIONS

被引:338
作者
HU, Y [1 ]
PENG, S [1 ]
机构
[1] SHANDONG UNIV,DEPT MATH,JINAN 250100,PEOPLES R CHINA
关键词
Mathematics Subject Classification: 60H10; 60H20;
D O I
10.1007/BF01204218
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the existence and uniqueness of the solution to forward-backward stochastic differential equations without the nondegeneracy condition for the forward equation. Under a certain ''monotonicity'' condition, we prove the existence and uniqueness of the solution to forward-backward stochastic differential equations.
引用
收藏
页码:273 / 283
页数:11
相关论文
共 12 条
[1]  
ANTONELLI F, 1993, ANN APPL PROBAB, V3, P277
[2]   EFFICIENT AND EQUILIBRIUM ALLOCATIONS WITH STOCHASTIC DIFFERENTIAL UTILITY [J].
DUFFIE, D ;
GEOFFARD, PY ;
SKIADAS, C .
JOURNAL OF MATHEMATICAL ECONOMICS, 1994, 23 (02) :133-146
[3]  
DUFFIE D, IN PRESS J APPL PROB
[4]  
HU Y, 1991, APPL MATH OPT, V24, P257, DOI 10.1007/BF01447745
[5]   PROBABILISTIC-INTERPRETATION OF A SYSTEM OF QUASI-LINEAR ELLIPTIC PARTIAL-DIFFERENTIAL EQUATIONS UNDER NEUMANN BOUNDARY-CONDITIONS [J].
HU, Y .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1993, 48 (01) :107-121
[6]  
HU Y., 1991, STOCH ANAL APPL, V9, P445, DOI [10.1080/07362999108809250, DOI 10.1080/07362999108809250]
[7]   SOLVING FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL-EQUATIONS EXPLICITLY - A 4 STEP SCHEME [J].
MA, J ;
PROTTER, P ;
YONG, JM .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 98 (03) :339-359
[8]  
PARDOUX E, 1992, LECT NOTES CONTR INF, V176, P200
[9]   ADAPTED SOLUTION OF A BACKWARD STOCHASTIC DIFFERENTIAL-EQUATION [J].
PARDOUX, E ;
PENG, SG .
SYSTEMS & CONTROL LETTERS, 1990, 14 (01) :55-61
[10]  
Peng S., 1991, STOCHASTICS, V37, P61