SOLUTION PROFILES BEYOND QUENCHING FOR DEGENERATE REACTION-DIFFUSION PROBLEMS

被引:10
作者
CHAN, CY
KONG, PC
机构
[1] University of Southwestern Louisiana, Lafayette
关键词
BEYOND QUENCHING; DEGENERATE REACTION-DIFFUSION PROBLEM; STEADY-STATE SOLUTION;
D O I
10.1016/0362-546X(94)00222-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:1755 / 1763
页数:9
相关论文
共 10 条
[1]   QUENCHING FOR SEMILINEAR SINGULAR PARABOLIC PROBLEMS [J].
CHAN, CY ;
KAPER, HG .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (03) :558-566
[2]   BEYOND QUENCHING FOR SINGULAR REACTION-DIFFUSION PROBLEMS [J].
CHAN, CY ;
KE, L .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1994, 17 (01) :1-9
[3]  
CHAN CY, 1994, APPL ANAL, V54, P17
[4]   STABILIZATION OF SOLUTIONS OF WEAKLY SINGULAR QUENCHING PROBLEMS [J].
FILA, M ;
LEVINE, HA ;
VAZQUEZ, JL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (02) :555-559
[5]   BLOW-UP AT THE BOUNDARY FOR DEGENERATE SEMILINEAR PARABOLIC EQUATIONS [J].
FLOATER, MS .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 114 (01) :57-77
[6]   BLOW-UP OF POSITIVE SOLUTIONS OF SEMILINEAR HEAT-EQUATIONS [J].
FRIEDMAN, A ;
MCLEOD, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (02) :425-447
[7]  
Friedman A., 1964, PARTIAL DIFFERENTIAL
[8]  
Ladde GS, 1985, MONOTONE ITERATIVE T
[9]   QUENCHING, NONQUENCHING, AND BEYOND QUENCHING FOR SOLUTION OF SOME PARABOLIC EQUATIONS [J].
LEVINE, HA .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1989, 155 :243-260
[10]  
Phillips D., 1987, Applicable Analysis, V24, P253, DOI 10.1080/00036818708839668