DEFORMATION OF CURVES WITH TAME ACTION

被引:10
作者
TUFFERY, S
机构
关键词
D O I
10.1515/form.1993.5.243
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k be a field, C/k a stable curve of genus g greater-than-or-equal-to 2, and G a finite group with tame action on C/k. We prove that the functor of the G-equivariant deformations of C is formally smooth, and even formally etale for certain curves. A theorem of Nakajima enables us to achieve this by showing that the k[G]-module Ext1(OMEGA(C/k), O(c)) is projective, whence H*-acyclic. A corollary (6.1) is the finiteness of the number of smooth curves of genus g greater-than-or-equal-to 2 with an automorphism group of order > 12(g - 1) over any algebraically closed field of characteristic p, with p = 0 or p > g + 1. Another corollary (5.2) concerns the lifting of pairs (C, G) from characteristic p to characteristic 0. A third corollary (5.3) is a criterion of good reduction for curves with automorphisms.
引用
收藏
页码:243 / 259
页数:17
相关论文
共 28 条
[1]  
Arbarello E, 1985, GEOMETRY ALGEBRAIC C
[2]  
Bourbaki N., 1980, ALGEBRE HOMOLOGIQUE
[3]  
Brown KS, 1982, GRADUATE TEXTS MATH, V87
[4]  
DELIGNE P, 1969, PUBL MATH IHES, V36, P75
[5]  
Grothendieck A., 1965, PUBL MATH IHES, V24
[6]  
GROTHENDIECK A, 1962, FONDEMENTS GEOMETRIE
[7]  
GROTHENDIECK A, 1971, LECTURE NOTES MATH, V224
[8]  
Grothendieck A., 1967, PUBL MATH IHES, V32
[9]  
Grothendieck A., 1957, TOHOKU MATH J, V9, P119, DOI [10.2748/tmj/1178244839, DOI 10.2748/TMJ/1178244839]
[10]  
Grothendieck A., 1966, PUBL MATH IHES, V28