COMPENSATION OF CAPACITIVE DIFFERENTIAL PRESSURE SENSOR USING MULTI LAYER PERCEPTRON NEURAL NETWORK

被引:8
|
作者
Moallem, Payman [1 ]
Abdollahi, Mohammad Ali [2 ]
Hashemi, S. Mehdi [2 ]
机构
[1] Univ Isfahan, Dept Elect Engn, Esfahan, Iran
[2] Payam Golpayegan Inst Higher Educ, Dept Elect & Comp Engn, Esfahan, Iran
基金
中国国家自然科学基金;
关键词
Capacitive pressure sensors; Levenberg-Marquardt training algorithm; Multi-Layer Perceptron; Temperature compensation;
D O I
10.21307/ijssis-2017-814
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Capacitive differential pressure sensor (CPS), which converts an input differential pressure to an output current, is extremely used in different industries. Since the accuracy of CPS is limited due to ambient temperature variations and nonlinear dependency of input and output, compensation is necessary in industries that are sensitive to pressure measurement. This paper proposes a framework for designing of CPS compensation system based on Multi Layer Perceptron (MLP) neural network. Firstly, a test bench for a sample popular CPS is designed and implemented for data acquisition in a real environment. Then, the gathered data are used to train different MLPs as CPS compensation system which inputs are the output current of CPS and temperature value, and the output is compensated current or computed pressure. The experimental results for an ATP3100 smart capacitive pressure transmitter show the trained three layers MLP with Levenberg-Marquardt learning algorithm could effectively compensate the output against variation of temperature as well as nonlinear effects, and reduce the pressure measurement error to about 0.1% FS (Full Scale), over the temperature range of 5 similar to 60 degrees C.
引用
收藏
页码:1443 / 1463
页数:21
相关论文
共 50 条
  • [1] Extraction of voltage harmonics using multi-layer perceptron neural network
    Mehmet Tümay
    M. Emin Meral
    K. Çağatay Bayindir
    Neural Computing and Applications, 2008, 17 : 585 - 593
  • [2] Extraction of voltage harmonics using multi-layer perceptron neural network
    Tumay, Mehmet
    Meral, M. Emin
    Bayindir, K. Cagatay
    NEURAL COMPUTING & APPLICATIONS, 2008, 17 (5-6) : 585 - 593
  • [3] Efficient Features Extraction for Fingerprint Classification with Multi Layer Perceptron Neural Network
    El-Feghi, I.
    Tahar, A.
    Ahmadi, M.
    2011 10TH INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS (ISSCS), 2011,
  • [4] Modelling the infiltration process with a multi-layer perceptron artificial neural network
    Sy, NL
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2006, 51 (01): : 3 - 20
  • [5] Reduced size multi layer perceptron neural network for human chromosome classification
    Delshadpour, S
    PROCEEDINGS OF THE 25TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4: A NEW BEGINNING FOR HUMAN HEALTH, 2003, 25 : 2249 - 2252
  • [6] Auto-calibration and -compensation of a capacitive pressure sensor using multilayer perceptrons
    Patra, JC
    van den Bos, A
    ISA TRANSACTIONS, 2000, 39 (02) : 175 - 190
  • [7] Statistical modelling of artificial neural networks using the multi-layer perceptron
    Aitkin, M
    Foxall, R
    STATISTICS AND COMPUTING, 2003, 13 (03) : 227 - 239
  • [8] Statistical modelling of artificial neural networks using the multi-layer perceptron
    Murray Aitkin
    Rob Foxall
    Statistics and Computing, 2003, 13 : 227 - 239
  • [9] Estimation of pulsatile flow and differential pressure based on multi-layer perceptron using an axial flow blood pump
    Dang Caixin
    Wang Shuai
    Yu Zheqin
    Wu Weiqiang
    Wu Kun
    Tan Jianping
    JOURNAL OF ENGINEERING-JOE, 2020, 2020 (14): : 928 - 931