REGULARITY AND STABILITY FOR THE MATHEMATICAL-PROGRAMMING PROBLEM IN BANACH-SPACES

被引:296
作者
ZOWE, J [1 ]
KURCYUSZ, S [1 ]
机构
[1] TECH UNIV WARSAW,INST AUTOMAT CONTROL,PL-00661 WARSAW,POLAND
关键词
D O I
10.1007/BF01442543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a regularity assumption for the mathematical programming problem in Banach spaces. The attractive feature of our constraint qualification is the fact that it can be considered as a condition on the active part only of the constraint, and that it is preserved under small perturbations. Moreover, we show that our condition is almost" equivalent to the existence of a non-empty and weakly compact set of Lagrange multipliers. The main step in the proof of our results is a generalization of the open mapping theorem. © 1979 Springer-Verlag New York Inc."
引用
收藏
页码:49 / 62
页数:14
相关论文
共 10 条
[1]  
AUBIN JP, 1977, CR ACAD SCI A MATH, V285, P451
[2]  
DAY M. M, 1973, NORMED LINEAR SPACES
[3]  
Dugundji J., 1966, TOPOLOGY
[4]   DIFFERENTIAL STABILITY IN NONLINEAR-PROGRAMMING [J].
GAUVIN, J ;
TOLLE, JW .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1977, 15 (02) :294-311
[5]  
Krein M. G., 1948, USP MAT NAUK, V3, P3, DOI 221.238.211.53
[6]   EXISTENCE AND NONEXISTENCE OF LAGRANGE MULTIPLIERS IN BANACH-SPACES [J].
KURCYUSZ, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1976, 20 (01) :81-110
[7]  
Robinson S. M., 1976, SIAM Journal on Numerical Analysis, V13, P497, DOI 10.1137/0713043
[8]   NORMED CONVEX PROCESSES [J].
ROBINSON, SM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 174 (447) :127-140
[9]  
Schaefer H. H., 1971, GRAD TEXTS MATH, V3
[10]  
ZOWE J, 1978, J OPTIMIZATION THEOR, V25