POINTWISE BOUNDS AND SPATIAL DECAY-ESTIMATES IN HEAT-CONDUCTION PROBLEMS

被引:15
作者
PAYNE, LE [1 ]
PHILIPPIN, GA [1 ]
机构
[1] UNIV LAVAL,DEPT MATH & STAT,LAVAL,PQ G1K 7P4,CANADA
关键词
D O I
10.1142/S0218202595000425
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we derive a new maximum principle for the absolute value of the gradient of a solution to the heat equation. We then apply this principle to obtain explicit bounds in the associated Dirichlet problem. Finally we derive explicit pointwise St-Venant type spatial decay estimates for solutions of certain initial-boundary value problems and their gradients in the case of unbounded domains.
引用
收藏
页码:755 / 775
页数:21
相关论文
共 17 条
[1]   SPATIAL DECAY-ESTIMATES IN TIME-DEPENDENT STOKES-FLOW [J].
AMES, KA ;
PAYNE, LE ;
SCHAEFER, PW .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (06) :1395-1413
[2]  
Boley B.A., 1960, Q APPL MATH, V18, P205
[3]   THE DETERMINATION OF TEMPERATURE, STRESSES, AND DEFLECTIONS IN 2-DIMENSIONAL THERMOELASTIC PROBLEMS [J].
BOLEY, BA .
JOURNAL OF THE AERONAUTICAL SCIENCES, 1956, 23 (01) :67-75
[4]   A SPATIAL DECAY ESTIMATE FOR HEAT EQUATION [J].
EDELSTEIN, WS .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1969, 20 (06) :900-+
[5]  
Friedman A., 1958, PAC J MATH, V8, P201, DOI [10.2140/pjm.1958.8.201, DOI 10.2140/PJM.1958.8.201]
[6]   SPATIAL DECAY-ESTIMATES IN TRANSIENT HEAT-CONDUCTION [J].
HORGAN, CO ;
PAYNE, LE ;
WHEELER, LT .
QUARTERLY OF APPLIED MATHEMATICS, 1984, 42 (01) :119-127
[7]   SPATIAL DECAY ESTIMATES FOR HEAT EQUATION VIA MAXIMUM PRINCIPLE [J].
HORGAN, CO ;
WHEELER, LT .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1976, 27 (03) :371-376
[8]   SPATIAL DECAY OF SOLUTIONS OF HEAT EQUATION [J].
KNOWLES, JK .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1971, 22 (06) :1050-&
[9]  
Lin C., 1992, SAACM, V2, P249
[10]   PHRAGMEN-LINDELOF TYPE RESULTS FOR 2ND-ORDER QUASI-LINEAR PARABOLIC EQUATIONS IN R(2) [J].
LIN, CH .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1994, 45 (02) :294-311