CHAOS IN THE COLPITTS OSCILLATOR

被引:328
作者
KENNEDY, MP
机构
来源
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS | 1994年 / 41卷 / 11期
关键词
D O I
10.1109/81.331536
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, we present experimental results and SPICE simulations of chaos in a Colpitts oscillator. We show that the nonlinear dynamics of this oscillator may be modeled by a third-order autonomous continuous-time circuit consisting of a linear inductor, two linear capacitors, two linear resistors, two independent voltage sources, a linear current-controlled current source, and a single voltage-controlled nonlinear resistor. The nonlinear resistor has a two-segment piecewise-linear DP characteristic. With the appropriate choice of parameters, the piecewise-linear circuit model has a positive Lyapunov exponent.
引用
收藏
页码:771 / 774
页数:4
相关论文
共 8 条
[1]  
Chua L. O., 1987, LINEAR NONLINEAR CIR
[2]   CHAOS SHIFT KEYING - MODULATION AND DEMODULATION OF A CHAOTIC CARRIER USING SELF-SYNCHRONIZING CHUA CIRCUITS [J].
DEDIEU, H ;
KENNEDY, MP ;
HASLER, M .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1993, 40 (10) :634-642
[3]  
NGUYEN NN, 1991, UCBERL M9136 U CAL E
[4]  
OPPENHEIM AV, 1992, P IEEE ICASSP, V4, P117
[5]   INSITE - A SOFTWARE TOOLKIT FOR THE ANALYSIS OF NONLINEAR DYNAMIC-SYSTEMS [J].
PARKER, TS ;
CHUA, LO .
PROCEEDINGS OF THE IEEE, 1987, 75 (08) :1081-1089
[6]  
Parlitz U, 1992, INT J BIFURCAT CHAOS, V2, P973, DOI [10.1142/S0218127492000562, 10.1142/S0218127492000823]
[7]  
RASHID MH, 1990, SPICE CIRCUITS ELECT
[8]  
Sedra AS., 1991, MICROELECTRONIC CIRC