On modules over group rings of locally soluble groups for a ring of p-adic integers

被引:0
作者
Dashkova, O. Yu. [1 ]
机构
[1] Kyev Natl Univ, Dept Math & Mech, Ul Vladimirskaya 60, UA-01033 Kyev, Ukraine
来源
ALGEBRA & DISCRETE MATHEMATICS | 2009年 / 01期
关键词
Linear group; Artinian module; locally soluble group;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The author studies the Z(p) infinity G-module A such that Z(p) infinity is a ring of p-adic integers, a group G is locally soluble, the quotient module A/C-A(G) is not Artinian Z(p) infinity-module, and the system of all subgroups H <= G for which the quotient modules A/C-A(H) are not Artinian Z(p) infinity-modules satisfies the minimal condition on subgroups. It is proved that the group G under consideration is soluble and some its properties are obtained.
引用
收藏
页码:32 / 43
页数:12
相关论文
共 9 条
[1]   Linear groups with the minimal condition on subgroups of infinite central dimension [J].
Dixon, MR ;
Evans, MJ ;
Kurdachenko, LA .
JOURNAL OF ALGEBRA, 2004, 277 (01) :172-186
[2]  
Fuchs L., 1973, INFINITE ABELIAN GRO, V1, P229
[3]  
Kurdachenko L. A., ARTINIAN MODULES GRO
[4]  
Kurdachenko L. A., INSIGHT MODULES DEDE, P2008
[5]  
Kurosh A. G., THEORY GROUPS, P1967
[6]  
Robinson D. J. R., 1972, ERGEBNISSE MATH IHRE, V1, P464
[7]  
Wehrfritz B. A. F, ERGEBNISSE MATH IHRE, P1973
[8]  
Yu Merzliakov, RATIONAL GROUPS, P1980
[9]  
Zaicev D. I., 1974, DOKL AKAD NAUK SSSR, V214, P1250