INTEGRABLE MAPPINGS AND NONLINEAR INTEGRABLE LATTICE EQUATIONS

被引:124
作者
PAPAGEORGIOU, VG
NIJHOFF, FW
CAPEL, HW
机构
[1] CLARKSON UNIV, INST NONLINEAR STUDIES, POTSDAM, NY 13676 USA
[2] UNIV AMSTERDAM, INST THEORET FYS, 1018 XE AMSTERDAM, NETHERLANDS
关键词
D O I
10.1016/0375-9601(90)90876-P
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Periodic initial value problems of time and space discretizations of integrable partial differential equations give rise to multi-dimensional integrable mappings. Using the associated linear spectral problems (Lax pairs), a systematic derivation is given of the corresponding sets of polynomial invariants. The level sets are algebraic varieties on which the trajectories of the corresponding dynamical systems lie. © 1990.
引用
收藏
页码:106 / 114
页数:9
相关论文
共 40 条
[11]   DYNAMICAL MAPS, CANTOR SPECTRA, AND LOCALIZATION FOR FIBONACCI AND RELATED QUASIPERIODIC LATTICES [J].
GUMBS, G ;
ALI, MK .
PHYSICAL REVIEW LETTERS, 1988, 60 (11) :1081-1084
[12]  
HELLEMAN RHG, 1983, LONG TIME PREDICTION
[13]   NUMERICALLY INDUCED CHAOS IN THE NONLINEAR SCHRODINGER-EQUATION [J].
HERBST, BM ;
ABLOWITZ, MJ .
PHYSICAL REVIEW LETTERS, 1989, 62 (18) :2065-2068
[14]   DISCRETE ANALOG OF A GENERALIZED TODA EQUATION [J].
HIROTA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (11) :3785-3791
[16]   NONLINEAR PARTIAL DIFFERENCE EQUATIONS .1. DIFFERENCE ANALOG OF KORTEWEG-DEVRIES EQUATION [J].
HIROTA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1977, 43 (04) :1424-1433
[18]  
JACOBI CGJ, 1927, AM MATH SOC COLL PUB, V9
[19]   LOCALIZATION PROBLEM IN ONE DIMENSION - MAPPING AND ESCAPE [J].
KOHMOTO, M ;
KADANOFF, LP ;
TANG, C .
PHYSICAL REVIEW LETTERS, 1983, 50 (23) :1870-1872
[20]   LOCALIZATION IN OPTICS - QUASI-PERIODIC MEDIA [J].
KOHMOTO, M ;
SUTHERLAND, B ;
IGUCHI, K .
PHYSICAL REVIEW LETTERS, 1987, 58 (23) :2436-2438