EXISTENCE OF NONTRIVIAL UNIVERSAL CRUMPLED CUBES

被引:0
|
作者
DAVERMAN, RJ
EATON, WT
机构
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:234 / &
相关论文
共 50 条
  • [31] Cubes and Boxes Have Rupert's Passages in Every Nontrivial Direction
    Bezdek, Andras
    Guan, Zhenyue
    Hujter, Mihaly
    Joos, Antal
    AMERICAN MATHEMATICAL MONTHLY, 2021, 128 (06): : 534 - 542
  • [32] Existence of nontrivial solution for a semilinear elliptic equation
    Yao, Yang-Xin
    Wang, Jian-Xia
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2003, 31 (09):
  • [33] The Existence of Nontrivial Solutions to a Class of Quasilinear Equations
    Jia, Xiaoyao
    Lou, Zhenluo
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [34] Existence of a nontrivial solution for Choquard's equation
    Zhang Zhengjie
    Kuepper, Tassilo
    Hu Ailian
    Xia Hongqiang
    ACTA MATHEMATICA SCIENTIA, 2006, 26 (03) : 460 - 468
  • [35] Existence of nontrivial solutions for a class of elliptic systems
    Lassoued, Lotfi
    Maalaoui, Ali
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2009, 36 (01): : 17 - 23
  • [36] Existence and multiplicity of nontrivial solutions for a nonlocal problem
    Guoshuai Yin
    Jinsheng Liu
    Boundary Value Problems, 2015
  • [37] EXISTENCE OF A NONTRIVIAL SOLUTION FOR CHOQUARD’S EQUATION
    张正杰
    Tassilo Küpper
    胡爱莲
    夏红强
    Acta Mathematica Scientia, 2006, (03) : 460 - 468
  • [39] Existence and multiplicity of nontrivial solutions for a nonlocal problem
    Yin, Guoshuai
    Liu, Jinsheng
    BOUNDARY VALUE PROBLEMS, 2015,
  • [40] ON THE EXISTENCE OF A NONTRIVIAL SOLUTION TO NONLINEAR PROBLEMS AT RESONANCE
    CAPOZZI, A
    LUPO, D
    SOLIMINI, S
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (02) : 151 - 163