ON THE PARAMETRIZATION OF FINITE-GAP SOLUTIONS BY FREQUENCY AND WAVE-NUMBER VECTORS AND A THEOREM OF KRICHEVER,I

被引:15
作者
BIKBAEV, RF
KUKSIN, SB
机构
[1] Forschungsinstitut für Mathematik, ETH Zentrum, Zurich
关键词
Mathematics Subject Classifications (1991): 35Q53; 35A30;
D O I
10.1007/BF00750304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the parametrization of real finite-gap solutions of an integrable equation by frequency and wavenumber vectors. This parametrization underlies perturbation and averaging theories for the finite-gap solutions. Out of the framework of integrable equations, the parametrization gives a convenient coordinate system on the corresponding manifold of Riemann curves.
引用
收藏
页码:115 / 122
页数:8
相关论文
共 12 条
[1]  
BIKAEV B, 1993, ALGEBRA ANALIZ, V5
[2]  
BIKBAEV RF, 1989, FUNCT ANAL APPL, V23
[3]  
BIKBAEV RF, 1989, ZAP NAUCHN SEM LOMI, V180, P23
[4]   FINITE-GAP PERIODIC-SOLUTIONS OF THE KDV EQUATION ARE NONDEGENERATE [J].
BOBENKO, AI ;
KUKSIN, SB .
PHYSICS LETTERS A, 1991, 161 (03) :274-276
[5]  
Dobrokhotov S.Yu., 1982, SOV SCI REV MATH PHY, V3, P221
[6]  
Dubrovin B. A., 1989, RUSS MATH SURV, V44, P35, DOI 10.1070/RM1989v044n06ABEH002300
[7]  
ERCOLANI N, 1990, CURVES GENERATE DOUB
[8]  
FLASCHKA F, 1988, COMMUN PUR APPL MATH, V33, P739
[9]  
KIRCHEVER IM, 1991, SOVIET SCI REV C, V9
[10]  
Kuksin S.B., 1988, MATH USSR SB, V136, P397