GENERALIZED NAVIER-STOKES EQUATIONS AND LIGHT-INDUCED GAS-KINETIC EFFECTS

被引:15
作者
NIENHUIS, G [1 ]
机构
[1] STATE UNIV LEIDEN,HUYGENS LAB,2312 AV LEIDEN,NETHERLANDS
来源
PHYSICAL REVIEW A | 1989年 / 40卷 / 01期
关键词
D O I
10.1103/PhysRevA.40.269
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
引用
收藏
页码:269 / 278
页数:10
相关论文
共 50 条
[31]   On generalized energy equality of the Navier-Stokes equations [J].
Yasushi Taniuchi .
manuscripta mathematica, 1997, 94 :365-384
[32]   Generalized Navier-Stokes equations for active suspensions [J].
J. Słomka ;
J. Dunkel .
The European Physical Journal Special Topics, 2015, 224 :1349-1358
[33]   High-Order Gas-Kinetic Scheme in Curvilinear Coordinates for the Euler and Navier-Stokes Solutions [J].
Pan, Liang ;
Xu, Kun .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 28 (04) :1321-1351
[34]   Three-dimensional third-order gas-kinetic scheme on hybrid unstructured meshes for Euler and Navier-Stokes equations [J].
Yang, Yaqing ;
Pan, Liang ;
Xu, Kun .
COMPUTERS & FLUIDS, 2023, 255
[35]   A third-order compact gas-kinetic scheme on unstructured meshes for compressible Navier-Stokes solutions [J].
Pan, Liang ;
Xu, Kun .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 318 :327-348
[36]   A gas-kinetic theory based multidimensional high-order method for the compressible Navier-Stokes solutions [J].
Ren, Xiaodong ;
Xu, Kun ;
Shyy, Wei .
ACTA MECHANICA SINICA, 2017, 33 (04) :733-741
[37]   An inverse kinetic theory for the incompressible Navier-Stokes equations [J].
Ellero, M ;
Tessarotto, M .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 355 (2-4) :233-250
[38]   A discrete kinetic approximation for the incompressible Navier-Stokes equations [J].
Carfora, Maria Francesca ;
Natalini, Roberto .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (01) :93-112
[39]   Kinetic Flux - Vector Splitting for the Navier-Stokes Equations [J].
Chou, S. Y. ;
Baganoff, D. .
Journal of Computational Physics, 130 (02)
[40]   On the three dimensional generalized Navier-Stokes equations with damping [J].
Le, Nguyen Thi ;
Tinh, Le Tran .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2025, 28 (04) :1923-1967