GENERALIZED NAVIER-STOKES EQUATIONS AND LIGHT-INDUCED GAS-KINETIC EFFECTS

被引:15
作者
NIENHUIS, G [1 ]
机构
[1] STATE UNIV LEIDEN,HUYGENS LAB,2312 AV LEIDEN,NETHERLANDS
来源
PHYSICAL REVIEW A | 1989年 / 40卷 / 01期
关键词
D O I
10.1103/PhysRevA.40.269
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
引用
收藏
页码:269 / 278
页数:10
相关论文
共 50 条
[21]   A two-stage fourth-order gas-kinetic CPR method for the Navier-Stokes equations on triangular meshes [J].
Zhang, Chao ;
Li, Qibing ;
Wang, Z. J. ;
Li, Jiequan ;
Fu, Song .
JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 451
[22]   An efficient and accurate two-stage fourth-order gas-kinetic scheme for the Euler and Navier-Stokes equations [J].
Pan, Liang ;
Xu, Kun ;
Li, Qibing ;
Li, Jiequan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 326 :197-221
[23]   A third-order subcell finite volume gas-kinetic scheme for the Euler and Navier-Stokes equations on triangular meshes [J].
Zhang, Chao ;
Li, Qibing .
JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 436
[24]   A third-order subcell finite volume gas-kinetic scheme for the Euler and Navier-Stokes equations on triangular meshes [J].
Zhang, Chao ;
Li, Qibing .
Journal of Computational Physics, 2021, 436
[25]   Discrete unified gas kinetic scheme for incompressible Navier-Stokes equations [J].
Shang, Jinlong ;
Chai, Zhenhua ;
Chen, Xinmeng ;
Shi, Baochang .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 97 :45-60
[26]   Generalized boundary equations for conservative Navier-Stokes equations [J].
Du, Yongle .
AEROSPACE SCIENCE AND TECHNOLOGY, 2019, 86 :836-849
[27]   Temporal decay for the generalized Navier-Stokes equations [J].
Zhao, Jihong ;
Zheng, Lifei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 141 :191-210
[28]   Norm Inflation for Generalized Navier-Stokes Equations [J].
Cheskidov, Alexey ;
Dai, Mimi .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (03) :869-884
[29]   On generalized energy equality of the Navier-Stokes equations [J].
Yasushi Taniuchi .
manuscripta mathematica, 1997, 94 :365-384
[30]   Generalized Navier-Stokes equations for active suspensions [J].
J. Słomka ;
J. Dunkel .
The European Physical Journal Special Topics, 2015, 224 :1349-1358