MARTIN AND END COMPACTIFICATIONS FOR NONLOCALLY FINITE GRAPHS

被引:27
作者
CARTWRIGHT, DI [1 ]
SOARDI, PM [1 ]
WOESS, W [1 ]
机构
[1] UNIV MILAN,DIPARTIMENTO MATEMAT,I-20133 MILAN,ITALY
关键词
MARTIN BOUNDARY; ENDS; HARMONIC FUNCTIONS ON GRAPHS; FATOU THEOREM; DIRICHLET PROBLEM;
D O I
10.2307/2154423
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a connected graph, having countably infinite vertex set X , which is permitted to have vertices of infinite degree. For a transient irreducible transition matrix P corresponding to a nearest neighbor random walk on X, we study the associated harmonic functions on X and, in particular, the Martin compactification. We also study the end compactification of the graph. When the graph is a tree, we show that these compactifications coincide; they are a disjoint union of X, the set of ends, and the set of improper vertices-new points associated with vertices of infinite degree. Other results proved include a solution of the Dirichlet problem in the context of the end compactification of a general graph. Applications are given to, e.g., the Cayley graph of a free group on infinitely many generators.
引用
收藏
页码:679 / 693
页数:15
相关论文
共 19 条
  • [1] [Anonymous], 1976, GRADUATE TEXTS MATH
  • [2] Cartier P., 1972, S MATH, V9, P203
  • [3] CARTWRIGHT DI, 1991, J THEOR PROB, V4, P111, DOI DOI 10.1007/BF01046997
  • [4] RANDOM-WALK ON FREE GROUP AND MARTIN BOUNDARY
    DERRIENNIC, Y
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1975, 32 (04): : 261 - 276
  • [5] DERRIENNIC Y, 1973, CR ACAD SCI A MATH, V277, P613
  • [6] DOOB JL, 1959, J MATH MECH, V8, P433
  • [7] Freudenthal H., 1944, COMMENT MATH HELV, V17, P1
  • [8] FURSTENBERG H, 1971, ADV PROBABILITY RELA, V1, P1
  • [9] UBER UNENDLICHE WEGE IN GRAPHEN
    HALIN, R
    [J]. MATHEMATISCHE ANNALEN, 1964, 157 (02) : 125 - 137
  • [10] Hunt G.A., 1960, ILLINOIS J MATH, V4, P313