PARTICLE-SYSTEMS AND REACTION-DIFFUSION EQUATIONS

被引:75
作者
DURRETT, R [1 ]
NEUHAUSER, C [1 ]
机构
[1] UNIV SO CALIF,DEPT MATH,LOS ANGELES,CA 90089
关键词
CONTACT PROCESS; SEXUAL REPRODUCTION MODEL; MEAN FIELD LIMIT THEOREM; HYDRODYNAMIC LIMIT; REACTION DIFFUSION EQUATION; METASTABILITY;
D O I
10.1214/aop/1176988861
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we will consider translation invariant finite range particle systems with state space {0,1,..., kappa-1)S with S = epsilonZ(d). De Masi, Ferrari and Lebowitz have shown that if we introduce stirring at rate epsilon-2, then the system converges to the solution of an associated reaction diffusion equation. We exploit this connection to prove results about the existence of phase transitions when the stirring rate is large that apply to a wide variety of examples with state space {0,1}S.
引用
收藏
页码:289 / 333
页数:45
相关论文
共 23 条
[1]  
[Anonymous], 1985, INTERACTING PARTICLE
[2]  
Aronson D., 1975, PARTIAL DIFFERENTIAL, P5, DOI DOI 10.1007/BFB0070595
[3]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[4]  
Athreya K., 1972, BRANCHING PROCESSES, DOI DOI 10.1007/978-3-642-65371-1
[5]  
Breiman L., 1968, PROBABILITY
[6]   ON THE STABILITY OF A POPULATION-GROWTH MODEL WITH SEXUAL REPRODUCTION ON Z2 [J].
CHEN, HN .
ANNALS OF PROBABILITY, 1992, 20 (01) :232-285
[7]   CELLULAR-AUTOMATON MODEL FOR REACTIVE SYSTEMS [J].
DAB, D ;
LAWNICZAK, A ;
BOON, JP ;
KAPRAL, R .
PHYSICAL REVIEW LETTERS, 1990, 64 (20) :2462-2465
[8]   REACTION DIFFUSION-EQUATIONS FOR INTERACTING PARTICLE-SYSTEMS [J].
DEMASI, A ;
FERRARI, PA ;
LEBOWITZ, JL .
JOURNAL OF STATISTICAL PHYSICS, 1986, 44 (3-4) :589-644
[9]   RIGOROUS DERIVATION OF REACTION DIFFUSION-EQUATIONS WITH FLUCTUATIONS [J].
DEMASI, A ;
FERRARI, PA ;
LEBOWITZ, JL .
PHYSICAL REVIEW LETTERS, 1985, 55 (19) :1947-1949
[10]  
DEMASI A, 1992, LECTURE NOTES MATH, V1501