CLASSICAL FIFTH-ORDER AND SEVENTH-ORDER RUNGE-KUTTA FORMULAS WITH STEPSIZE CONTROL

被引:147
作者
FEHLBERG, E
机构
[1] Marshall Space Flight Center Computation Laboratory, National Aeronautics and Space Administration (NASA), Huntsville, 35812, Alabama
关键词
D O I
10.1007/BF02234758
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
New explicit fifth- and seventh-order Runge-Kutta formulas are derived. They include a stepsize control procedure based on a complete coverage of the leading term of the local truncation error. These formulas require fewer evaluations per step than other Runge-Kutta formulas of corresponding order if the latter ones are also used with stepsize control (richardson's extrapolation to the limit). By a proper choice of some parameters the leading truncation error term of our formulas can be reduced substantially, thereby allowing an increase in the stepsize without loss of accuracy. A numerical example is presented. Our results being of the same accuracy, we save in this example 40% to 60% computer time compared with the known Runge-Kutta formulas of corresponding order. © 1969 Springer-Verlag.
引用
收藏
页码:93 / &
相关论文
共 11 条
[1]  
[Anonymous], 1963, J AUSTR MATH SOC, DOI [10.1017/S1446788700027932, DOI 10.1017/S1446788700027932]
[2]  
Butcher J.C., 1964, J AUSTR MATH SOC, V4, P179, DOI 10.1017/S1446788700023387
[3]  
FEHLBERG E, 1964, Z ANGEW MATH MECH, V44, pT17
[4]   NEW HIGH-ORDER RUNGE-KUTTA FORMULAS WITH AN ARBITRARILY SMALL TRUNCATION ERROR [J].
FEHLBERG, E .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1966, 46 (01) :1-&
[5]  
FEHLBERG E, 1968, NASA287 TECHN REP
[6]  
Fehlberg E., 1958, ZAMM, V38, P421
[7]  
Huta A., 1956, ACTA MATH U COMENIAN, V1, P201
[8]  
Huta A, 1957, ACTA FAC RERUM NAT U, V2, P21
[9]  
Kutta MW., 1901, Z MATH PHYS, V46, P435
[10]  
Nystrom E. J., 1925, ACTA SOC SCI FENN, V50