CLASSICAL FIFTH-ORDER AND SEVENTH-ORDER RUNGE-KUTTA FORMULAS WITH STEPSIZE CONTROL

被引:144
作者
FEHLBERG, E
机构
[1] Marshall Space Flight Center Computation Laboratory, National Aeronautics and Space Administration (NASA), Huntsville, 35812, Alabama
关键词
D O I
10.1007/BF02234758
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
New explicit fifth- and seventh-order Runge-Kutta formulas are derived. They include a stepsize control procedure based on a complete coverage of the leading term of the local truncation error. These formulas require fewer evaluations per step than other Runge-Kutta formulas of corresponding order if the latter ones are also used with stepsize control (richardson's extrapolation to the limit). By a proper choice of some parameters the leading truncation error term of our formulas can be reduced substantially, thereby allowing an increase in the stepsize without loss of accuracy. A numerical example is presented. Our results being of the same accuracy, we save in this example 40% to 60% computer time compared with the known Runge-Kutta formulas of corresponding order. © 1969 Springer-Verlag.
引用
收藏
页码:93 / &
相关论文
共 11 条
  • [1] [Anonymous], 1963, J AUSTR MATH SOC, DOI [10.1017/S1446788700027932, DOI 10.1017/S1446788700027932]
  • [2] Butcher J.C., 1964, J AUSTR MATH SOC, V4, P179, DOI 10.1017/S1446788700023387
  • [3] FEHLBERG E, 1964, Z ANGEW MATH MECH, V44, pT17
  • [4] NEW HIGH-ORDER RUNGE-KUTTA FORMULAS WITH AN ARBITRARILY SMALL TRUNCATION ERROR
    FEHLBERG, E
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1966, 46 (01): : 1 - &
  • [5] FEHLBERG E, 1968, NASA287 TECHN REP
  • [6] Fehlberg E., 1958, ZAMM, V38, P421
  • [7] Huta A., 1956, ACTA MATH U COMENIAN, V1, P201
  • [8] Huta A, 1957, ACTA FAC RERUM NAT U, V2, P21
  • [9] Kutta MW., 1901, Z MATH PHYS, V46, P435
  • [10] Nystrom E. J., 1925, ACTA SOC SCI FENN, V50